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Abstract

We study a family of convergences (actually pretopologies) in the hyperspace of a metric space
that are generated by covers of the space. This family includes the Attouch—-Wets, Fell, and Haus-
dorff metric topologies as well as the lower Vietoris topology. The unified approach leads to new
developments and puts into perspective some classical results.
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0. Introduction

Let (X, d) be a metric space. For subsétsand D of X, the Hausdorff distance be-
tweenC and D is given byh(C, D) =inf{e > 0: C € B(D, ¢) andD C B(C, ¢)}, where
B(A, ¢) is thee-enlargement of the set of radiuse. The Hausdorff distance induces a

convergence H on the power set By definingA;, —H> A wheneveri(A;, A) — 0. How-
ever, this convergence works well only when restricted to bounded (closed) subsets. For
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unbounded sets convergence in the Hausdorff distance turns out to be too strong. There are

simple examples of sequences of subsets (such as theylires/n in the plane) that do

not converge with respect to the Hausdorff distance, but should “reasonably” converge.
One solution to overcome this difficulty is to modify the convergence H by elements of

a properly chosen famil§ < 2X. The most celebrated example of this approach is the so-

called Attouch—Wets convergence AW, also called bounded-Hausdorff convergence. This

convergence was initially introduced by Ma@gd 9] and studied later by Attouch and Wets

(see [1-3]). Fixingxp € X, we say that a net4,) of subsets AW-converges b C X if

for everye > 0 andn € N,

A; N B(xg,n) CB(A,e) and AN B(xg,n) C B(A;,¢), eventually

In this case convergence in the Hausddifitance has been modified by the familyof
bounded sets.

Attouch—Wets convergence has been intensively investigated since the mid 80’s (see [5]
for references) and applied to study approximation and optimization problems. It turned out
that besides the family of bounded subsets, othmilies were also useful for modifying
the convergence H. For instance, in the case of a Banach gpaces can consider the
family S of all norm (or weakly) compact subsets Xf[7].

In this paper we present a general theorySetonvergences which are modified H-
convergences through the use of various famibiesf subsets ofX. It turns out that all
such convergences are pretopologies and that the fandlli@®e essentially bornologies
on X. This explains the title of the paper.

Besides the trivial bornologyY = 2X) and the bornology of bounded sets, the bornolo-
gies of finite sets, compact sets and totally bounded sets are also of general interest: their
common lower part is the lower Vietorigpology (Proposition 2.2.) while the correspond-
ing upper parts are, respectively, the cofinite topology, the co-compact topology (so that
the Fell topology is a particula$-convergence) and a newly identified object in the case
of totally bounded sets.

The paper is organized as follows: in Section 1 we recall some definitions and fix the no-
tation. Section 2 is devoted to lower bornological convergences, cSitfedonvergences.

We study relationships betwedir -convergences and other “lower” convergences, such
as the lower Vietoris topology. Moreover, topological and uniform propertieSofre
investigated. In Section 3 we discuss upper bornological convergéricésfe show that
there are distinct differences in the behaviourSdf as compared t&~. And finally, in
Section 4 we consider the convergeiicas the supremum &~ andS+.

1. Preliminaries
Let Z be a nonempty set and kg% denote the family of all filters o . For each € Z,
let U (z) denote the ultrafilter generated fy}. A convergencen Z is a mappingr from

¢Z to the family 2 of all subsets o which satisfies the following conditions:

() zexU(z)) forall zin Z;
(i) F<Gimpliesn(F)Cn(G)forall F,GepZ.
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The pair(Z, ) is called aconvergence spacdf F € ¢Z andz € n(F), then we say
that F w-convergedo z and we writez € x-lim . The notion of convergence can be
equivalently formulated in terms of nets (see, e.g., [12,13]). Thus every convergence
Z can be treated as a mapping from the family of net&anto 2.

In this paper we will use both the net and the filter terminology.

If 71 andm, are two convergences dn, we say thatrs is finer thansy, or thatmy
is coarserthanmy, and writerr; < 2, providedz € mo-lim z; = z € m1-lim z; for every
net(z;) onZ. Letn;, i € I, be a family of convergences ¢h For each filtetF on Z we
denoter (F) =();¢; 7 (F). Thenr is a convergence o finer than each convergencg
i € 1. We denote this uniquely defined convergence Wwjith, ; and call it thesupremum
of the convergences,i € 1.

Let (Z, ) be a convergence space and Z. Let N (z) be the filter obtained by inter-
secting all filters thatr-converge t. This filter is called ther-neighbourhood filteat z,
and its elements are-neighbourhoodsf z.

A convergencer on Z is calledpretopologicalor apretopologyif AV (z) w-converges
to z for eachz € Z. If r is a pretopology or¥, the pair(Z, ) is called apretopological
space

Let (X, U) be a quasi-uniform space abd! = {U~1: U eU} bethe conjugate quasi-
uniformity, whereU = = {(y, x): (x, y) € U}. If S is a nonempty family of subsets &f,
we may consider the following three convergences dnl2t (A,) be a net of subsets of
X andA C X. We say that the net4,):

e ST-converges$o A, and we writed € S~-lim A; or A, ‘i; A, provided for eacl$ € S
andU € U there existsg such thatA NS € U~1(A,) for everyr > 1o;

+
e St-convergeso A, and we writed € ST-lim A, or A, =N A, provided for eacl§ € S
a~ndU € U there existgg such thatd; N S C U(A) for everyr > ro;
e S-convergeso A provided itS~-converges tod andS™T-converges to,

where U(A) = {y € X: (x,y) € Uforsomex € A}, U L(A) ={y € X: (x,y) €
U~ for somex € A}.

For similar ideas see [4,6,7,20,22].

In this paper the underlying spadgis a metric space. We use the natural uniformity
of X, and the definitions o, ST andS can be reformulated as follows:

A5 A o VSeS Ves0, 3, Viz1 ANSCAS

+
A5 A o VSeS Ves0, 3. Vit A, NSC AL
and

A2 A o VSeS Ves0, 3, Vi1, ANSCASandA, NS C A°,

whereA® = B(A,e) =
diuse.

Note that if X is a metric space anfl = {X} then theS-convergence on the space of
closed bounded subsets &fis simply the H-convergence, i.e., the convergence in the

cea B(x, &) and B(x, ¢) is the open ball with center and ra-
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Hausdorff metric. We also denote H= {X}~, H" = {X}T, and V-, the lower Hausdorff,
the upper Hausdorff, and the lower Vietoris convergence, respectively.
We now define some useful set-theoretical operations on families of subsets:

JS={AC X: AC SforsomeS e S},
2(S)={S1USU---US,: S;eSfori=1,2,...,n; neN},

and we have the following properties:

SClS, SCX©), X¥©O=XUS),
HXy=2% 19} =0).

By s(X), cl(X), b(X), tb(X) and ¢ X) we denote the families of all singletons #f,
closed subsets o, bounded subsets df, totally bounded subsets &f and compact
subsets o, respectively.

LetS, W C 2X be nonempty. We say th&t refines)V, and writeS < W, if for every
S € S there existd¥ € W with S € W. Observe thas < W ifand only if S € | W, and
as a consequenc&:< W andW < S ifand only if | S = | W.

A bornologyon a setX is a family S of subsets o such that:

(1) Sis acoverofX,
(2) Sis closed under subsets and
(3) Sisclosed under finite unions (see [15]).
The set convergences defined above are generated by families of subsets which are
essentially bornologies.
From now on we assume th&tis a metric space andits metric.

2. 8~-convergences

We begin with the following observations ¢iT -convergences:

#eS -limA, foreveryS and every netA,;), (2.1)
if AcS™-imA, andB C A, thenB e S -limA;, (2.2)
S =S =(Z©) =(ZU9) =((Z©))". (2.3)
if S<W, thenS™ <W™. (2.4)

Proposition 2.1. LetS be a cover of{. Then

() V- <SS <HT;
(i) V- =s(X)” andH™ = {X}".

Proof. Let A; andA be elements of ® ande > 0.
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O If A, A, A, itis clear that4, i; A,asforevery§ €S, ANS C AC A{ eventually.

Suppose thati; 5> A and thatB(x, £) N A  @; pick y € B(x,&) N A, S € S with y € §
and choose > 0 such thati(x, y) +r < ¢; then there existg) such thatd N S € A} for
all t > 19 and for every such we can choose; € A; with d(y,a;) <r. Thusd(x, a;) <

dx,y)+d(y,a;) <d(x,y)+r <eandB(x,e) N A, #@. This shows tha#i, AN A.

(i) By (i) we only need to prove that(X)~ < V™. Let 4, Y. A and pickxp € X and
e > 0. We can suppose thap € A; then B(xp, ¢) N A # @ and there existg such that
B(xg,8) N A; # @ for all t > 1. This shows thatg € A7 for all ¢ > 19. Also, it is obvious
thatH" ={X}~. O

Remark. If S contains a nonempty set then tie-convergence is admissible if and only
if S is a cover ofX. Recall that a convergence on a hyperspace is cali@dgissiblef the
mappingx — {x} is an embedding. It is not hard to show that the mappiag {x} is S~ -
continuous for every familys and if S is a cover ofX then the inverse mapping} — x

is continuous as well. Consequentfy, is admissible provided is a cover ofX. Observe
that this fact follows also frm Proposition 2.1(i), because \and H™ are admissible. Now
assume that fof # {¢}, S~ is admissible and suppose titais not a cover ol i.e., there

existsx € X \ |JS. Take anyy from [ JS and putx, =y for n € N. Then{x,} 5 {x} but
X, 7> x, acontradiction.

Proposition 2.2. V~ =S8~ if and only if everyS € S is totally bounded.

Proof. Suppose eacli € S is totally bounded and le#, v, A, S €S§ ande > 0; then
AN S is totally bounded and there exist, ..., x, € A such thatA N S € | J] B(xi, £/2).
By V~-convergence ofA;) to A,

tg, Vt > 10, AN B(x;,e/2)#@ fori=1,...,n;
pick y; € A; N B(x;, ¢/2); then

n n
AnSc|JB&i.e/2 | JBi.e) S A forallz > 1.
i=1 i=1
Conversely, suppose that there exiSte S which is not totally bounded; then there
existse > 0 such thatS ¢ (J] B(xi, ¢) for all {x1,...,x,} € S. If  ={x1,...,x,} and
s={y1,...,ym} belong toUC{o Xk, putt < s if and only if t C s and define the natA,)
on 2X by

n
Ar=|JBi.e/2).
i=1
Then(A;) is notS™-convergent tas, ass is not contained in any&f/z, while A; AN S; to
see this picky € S, 0 > 0 and puttg = {y}. ThenA; N B(y,o) A @ forallt > 1. O
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Corollary 2.3. For every covess:

(i) (localization If A € X is such thatA N § is totally bounded for eacl§ € S, then
A5 Aifandonlyifa, > A;
(i) If A is totally bounded, thed, vS AifandonlyifA, ‘i; A.

Now, given two coverss andW, what are the conditions f& andV to generate the
same convergence?

We know that ifS refinesW, thenS~ < W~ but the reverse implication is not true
in general: takeX = R2, W the cover of all singletons anfl = W U {the unit dis¢. By
Proposition 2.25~ =W~ =V, while S (or X(S)) is not a refinement ofV.

We can, however, proceed in the spirit obposition 2.2 provided the right generaliza-
tion of total boundedness is introduced:

Definition 2.4. Let S be a cover of(; a subsetA of X is totally bounded with respect &,
or A is S-totally boundedif

Ve>0, 351,...,5 €S, ACANSDH U---UANS)°.
We note the following properties &-total boundedness:

(a) Every subset of eachie S is S-totally bounded

(b) If A1 and A2 are S-totally bounded, therd1 U A5 is S-totally bounded

(c) If S is the cover of all singletonss-total boundedness is the usual total boundedness

(d) If the coverS refines the covelV, thenS-totally bounded sets are al9d/-totally
bounded

Theorem 2.5. LetS and W be covers oK. The following are equivalent

() Forall AC XandallS €S, AN S is W-totally bounded
(i) The family ofS-totally bounded subsets &f is included in the family ofV-totally
bounded subsets af;
(i) S—<w.

Proof. (i) = (ii) Let B C X be S-totally bounded and pick > 0; there existSy, ..., S,
€ S such thatB C (BN S1)%2U--- U (BN Sn)f/?; by (i) the setsBN S1,..., BN Sy,
areW-totally bounded and there exigtl, .. ., Wkll, < WL W € W such that for
j=212,...,m,
iNe/2 i\&/2,

BNS;c(BNS;NW{)"“U---U(BNS;nW[ )"

thus
m kj . m kj .

el JU®Bnsinw!) <l JUJBnw!)".
j=1r=1

j=1r=1
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(i) = (i) is obvious.

(i) = (iii) Suppose A, W A and letS € § and ¢ > 0 be given. There exist
Wi,..., Wi € W such thatd N S < (A N S N W;)/2 andio such thatd N W; < A%/

forallt >tpandj=1,...,m;therefore

k k
AnsclJAansnwy2c| J(Aanw)F2c A
j=1 j=1

for all r > 1. HenceA; ‘i A.

(iii) = (i) Suppose there exists € X such thal” = AN S is notW-totally bounded for
somes € S; then there exists > 0 such tha?” & | J7'(T N W;)¢ forall Wy, ..., W, € W;
putr = {Wi,..., W,,} C W and order the seft J7°W" as in the proof of Proposition 2.2.

_ S~
PutB;, = (T NWyU---U(T NW,);then it is clear thai, Vi T and thatB; A~ T, as
TNS=T¢B. O

Let us denote by, the family of allS-totally bounded subsets &f.

Corollary 2.6.

(i) ST =w~ ifand only ifS, = W,;
(i) There areS—-convergences that are not comparatiteke, for exampleX = R? and
S andW the covers consisting of horizontal and vertical lines, respectjvely
(iii) GivenA C X, every subset oA is S-totally bounded if and only 6~ = (SU {A})~;
(iv) S~ =H~ ifand only if every subset df is S-totally bounded, a$x}, = 2%;
(v) (localization) If A c X is such that for everyW € W the setA N W is S-totally

bounded, the, ‘i; A= A VX; A.

In the list, (a)—(d), of properties &-total boundedness, we did not mention subsets; it
turns out that, in genera$, is not closed under subsets (see Example 2.7 below).
Another natural generalization of total boundedness is the following: say that a 8ubset
of X is weaklyS-totally boundedf Ve > 0,351, ..., Sy € S such thatB € S] U --- U §;.
It is clear that ifS is the cover of all singletons, weak-total boundedness angttotal
boundedness agree. Denote&ythe collection of all weaklys-totally bounded subsets
of X. ThenS™* is closed under finite unions and subsé&isc S* and(S*)* = S*. The next
example shows however, thét is too large for our purposes.

Example2.7.Let X = R2, S the cover of vertical lines. The stripe={(x, y): 0<x <1}
is S-totally bounded, but its subset = {(x,y) € B: 0 <x <1, y =1/x} is not; by
Corollary 2.6,(S U {B})~-convergence is strictly stronger th& -convergence, while
S* = (SU{B})*, asB is weaklyS-totally bounded.

As an application of Theorem 2.5, we have
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Proposition 2.8. The following are equivalent

(i) S.is closed under subsets
(i) S™=8;
(i) Sy =(Sv)s-
We now turn our attention to the question of convergence and uniform proper§es of

The first observation is tha~-convergence need not verify the iterated limit condition.
Consequently, it is not topological in general.

Example 2.9. Let X = R?, S the cover of horizontal lines and pdt= {(x, y): x <0,
y = 0}; for eachn € N consider

1
Bn={(x,y): x<0, y= Znex}.

ThenB, ‘i; A, as for each horizontal linkande > 0, eitherANI =P orANl=AC B;
foralln > 1/(2¢).
Now, for eachn andm in N, consider then horizontal lines
ki = {(x,y): y=ﬁ} A<i<m)

and putC;, = B, N{k1 U---Uky,}. ThenCy, ‘i; B, asm — oo. Also theC).’s do not
S™-converge tad asA is unbounded and eaddy;, is finite.

However, nontopological convergences acg unusual in the theory of hyperspaces.
For instance, the well-known Kuratowski convergence is also not topological in general.

Nontopological convergences build a wide spectrum: from very general (no constraints
at all) to fairly specialized (such as pretopologies) which are close to ordinary topologies
(see, e.g., [10] for more details on general convergences).

By definition, S™-convergence is a modification of the lower Hausdorff convergence
H™ by the family S. It is well known (see, e.g., [11]) that the convergence ¢an be
described in terms of quasi-uniformities. The fam{iy; : ¢ > 0}, whereH; = {(A, B) €
2% x 2X: A C B?}, is a base of a quasi-uniformity of Zompatible with H-.

Let us consider the famil§~ = {S™(S1, ..., Sy; €): S1,..., S, € S ande > 0}, where

S (S1,....Sue)={(A,B)ye2" x2¥X: AnS; c B fori =1,...,n}.

One might presume that this family generates a kind of uniform structure® athat
is related taS—. However, sinceS™ is not topological in general, this structure cannot be
expected to be quasi-uniform (quasi-umifoties are always compatible with topological
convergences).

Observe that the famil§~ is a filter-base. Le$ ~ denote the filter on’® x 2X generated
by §~. Of course, each element8f contains the diagonal of2x 2X. Consequently, the
family $~ is a pretopological uniform structure orf 2It can be shown that in general the
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filter $~ is neither symmetric (i.e§~ # (87)~1) nor composable§~ ¢ 8 o87). This
means tha8™~ is neither a uniformity nor a quasi-uniformity in general.

Now we come to the question of ha8r is related toS~-convergence. It is known
(see, e.g.,[16,18]) that every pretopological uniform structure induces a pretopology on the
underlying space. Thus&™~ is compatible withS—, the convergencé™ is a pretopology
on 2X

Pretopologies are convergences which have convergent neighbourhoodfilters (see [10]).
Thus they can be described in terms of total systems of neighbourhoods. However, the
main difference with topologies is that pretopologies need not admit neighbourhood filters
generated by open sets (this property is equivalent to the iterated limit condition).

The total system of neighbourhoods of the pretopolo@y) induced byS™ on 2X is
equal to{S™(A): A C X}, whereS™ (A) denotes the section filter 8f at A, i.e., the filter
on 2X generated by the sets

(N) S (51,....8e)(A)={BCX: ANnS; CB¢fori=1,...,n},
whereSy, ..., S, € S ande > 0.

Lemma 2.10. The pretopological uniform structu&™ is compatible with the convergence
S,ie,AM8)=85".

Proof. Let S1,..., S, € S ande > 0 be given. Take a nét4,) of subsets of. It follows
immediately from (N) thatd; € S™(S1, ..., Su; €)(A) ifand only if AN S; € AY fori =
1,....n.Consequentiy(87)=S8". O

From Lemma 2.10 we infer the following

Theorem 2.11. The convergencé™ is a pretopology or2X. For eachA C X the family
Bs-(A) = {S‘(Sl, ces Sy e)(A): S1,..., Sy eSande > 0}

isalocal base o8~ at A.

Corollary 2.12. The convergencé™ is topological if and only if

(A7) VAC X,VUeBg-(A),aV € Bg-(A),VB e V,IW € Bs-(B), W C U.

Proof. Condition (A7) is just the translation, in terms of neighbourhood bases, of the

iterated limit condition (see [17], [13, p. 153]Jhus the corollary follows from the theo-

rem. O

The following corollary follows immediately from Lemma 2.10.

Coroallary 2.13. If the pretopological uniform structur8~ is quasi-uniform, the conver-
genceS~ is topological.



760 A. Lechicki et al. / J. Math. Anal. Appl. 297 (2004) 751-770

The reverse implication is not true in general.

Example 2.14. Let X be the space of real numbers aSidhe family of all finite sub-
sets ofX. ThenS~ is topological by Proposition 2.1. We show ttgat ¢ 8~ o $~. Take
y1, y2 € X such that|y; — y2| > ¢ > 0 and putS = {y1, y2}. ThenS (S;¢) € §~. Let
V =S (81,...,8,;8) € 8~ be arbitrary. SinceS andS; (i =1,...,n) are finite, there
arecy,c2€ X\ (SUS1U---US,) such thafcy — y1| <8 and|c2 — y2| < 8. PutA =5,
B ={y1} andC = {c1,c2}. ThenANS; C {y1,y2} S C® andC N S; =¥ < B®. Thus
(A,B) eV oV but(A, B) ¢ S(S; &) becaused N S = {y1, y2} £ B®.

The following is a sufficient condition fd$~ to be quasi-uniform.
Proposition 2.15. Assume that
(¢) VS €S8,3e >0andS’ € S such thats® C §'.
Then8~ is a quasi-uniformity. Consequently; is topological.

Proof. Itis enough to show thd&™ € 8~ o 8. Take an arbitrang (S1, ..., Sy; ) € 8.
Considefey, ..., &, > 0 andsy, ..., S, € S such thatS;” € S/ (i =1,...,n) and picko,
0<o <min(e/2,e1,...,8,). ThenV =S (S;,...,S,;0) €8 . If (A, B) e VoV then
there isC € X suchthatAnN S € C” andC N S/ € B? fori =1,...,n. We have to show
thatANS; C B fori=1,...,n.If x belongs toA N S; thenx eAﬂSf" CANS CCo.
Hence there ig from C such thatd(c, x) < o. Consequently; € (AN S))7 C Sf" cs
andc e CNS; € B?. Finally,x € (B°)? € B*. O

Under some additional assumptions®rthe condition £) is also necessary.

Proposition 2.16. Suppose tha$ is a cover andS = X' (S). If 8 is quasi-uniform, then
S has the propertye).

Proof. We can assume that capd) > 1. Now suppose that condition)(is not satisfied.
Then there iy € S such that

foreverye >0andeverys' €S, S5 € §'.

BecauseS is a cover and = X' (S) we can assume that cd8d) > 1. Take two different
elementss andr from Sp and picks, 0 < & < (1/2)d(s, r). We will show that for every
e>0andSy,...,S, €S,

S (S1,--.,8158)0S (S1,..., S0 6) LS (S0; 9).

Take arbitrarys > 0 and$s, ..., S, € S. ThenSg ZS=5U---US, foranys, 0<
o < min(8, e). Pick anyx € S§ \ S. Then there isso € Sp such thatd(so, x) < 0. We
can assume that(sg, s) > &, otherwise we would take instead ofs. Put A = {x, so},
B ={s} andC = {x}. Thenwe haved N S; C {50} C {x}° C C¢ andC N S; =¥ C B¢ for
i=12....,n.But(A, B) ¢ S (So;8) becausepc AN S\ B’. O
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Observe that ifS is a bornology, conditions) means thafS is closed with respect to
small enlargements:

(E) ForeverysS € S there ise > 0 such thats® € S.

Thus for bornologies we have the following

Proposition 2.17. The structureéS™ is quasi-uniform if and only i§ is closed with respect
to small enlargements.

Example 2.18. Let xo € X and consider the cove§ of balls centered atg. S™-
convergence is the lower Attouch—Wets convergence Agée [5, p. 81]); sincé verifies
the condition in Proposition 2.15, AWis topological. Asingeneraf~ = ({S) 7, AW~ is
equal to §X)~, where [{X) is the family of all bounded subsets &f By Proposition 2.2,
AW~ =V~ if and only if each bounded subset ¥fis totally bounded, and AW =H" if
and only if X is bounded, by Corollary 2.6(iv).

Remark. All results of this section are valid for uniform spaces.

3. S*-convergences

As with S™-convergences, we begin with a few observations:

X e ST-lim A, for everyS and every netA;), (3.1
if AeST-imA, andB 2 A, thenB e STt-lim A, (3.2)
ST=US"=(2®) =(zUS) = (Z®)) ", (3:3)
if S1< Sz, thens) <S5 (3.4)

Proposition 3.1. LetS be a cover ofX:

(i) s(xX)t <S8 <X},
(i) {xX}r=@H" =H*;
(i) A e s(X)*-lim A, if and only if the upper limitLs' A; of (A;) with respect to the
discrete topology oX is contained inA.

Proof. (i) and (i) are clear ass is a cover. (i) Suppose that € s(X)*-lim A; andx €
Ls'A; =), Ur>, A,; thenVe > 0, 3rg, Vt > 19, A; N {x} C A%, there exists > rg with
x € A, and therefore € A% thus L$ A; C A.

Conversely, suppose that'l4 € A and fixp € X ande > 0; if p ¢ Ls' A;, there exists
rsuchthatforalk >, p ¢ A, andA, N{p} C A%;if peLs' A, p e AandA, N{p} C A®
foreveryt. O
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Remark. Note that a netx,) of points of X is S(X)*-convergent tor € X if and only
if y#x implies y # x; eventually; thus the restriction of ¥)* to X is the cofinite
topology and €X)* is not admissible in general. It turns out that the only admissiiie
convergence is H. Of course, H is admissible. If car@X) = 1 thenSt = HT. Assume
now that cardX) > 1, ST is admissible and suppose th#tdoes not contain the séf.
By (3.3) we can assume th&t= X'(S). Thus we can direc§ upwardly by inclusion and
pick xs € X \ S for eachS € S. Then the net{xs}) is ST-convergent to every subset &t
Taking anyx, y € X we infer from admissibility ofS™ that(xs) converges ta andy, i.e.,
x = y. Consequently, cat&) = 1, a contradiction.

We now determine when two covers generate the same convergence.

Theorem 3.2. LetS and)V be covers of. The following conditions are equivalent

(i) S<XTW),
(i) St <W.

Proof. (i) = (ii) follows from (3.3) and (3.4).

(i) = (i) SupposeS does not refineX (W); then there exists € S such thatS ¢
W1 U ... U W, for every finite union of elements o; for everyr = (W1, ..., W,,) pick
x € S\UIWi. lf t =Wa,...,W,) andv=(Wj,..., W,,), putt < if and only if Wy U
~-UW, € WjU---UW,,; itis then easy to see that the rigt;}) is WW*-convergent—but
not ST-convergent—to the empty set

We remark that the empty set is isolatedor if and only if X € S, thatis ifST =H™.

Corollary 3.3. LetS and W be covers o¥.

() St=wTifandonlyif| X(S) =X W);
(i) If St <W*, thenS~ < W—;
(i) ST =s(X)* if and only if everys € S is finite
(iv) St =HT if and only if there exisfy, ..., Sy € S suchthatX = Sy U --- U Sk;
(v) s(X)* =HT ifand only if X is finitg
(vi) There are noncomparablg*-convergences.

Theorem 3.2 and Corollary 3.3(i) are in marked contrast with Theorem 2.5 and Corol-
lary 2.6(i).

Also the example given before Definition 2.4 shows that, in genéral< W~ does
notimply ST < W+.

We will show later (see Proposition 3.6) théit -convergence is not topological in gen-
eral. However, conditions which ensure ti&it-convergence is topological are similar to
those forS—-convergence.
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Using the same notation as in Section 2, let us consider the pretopological uniform

structureS™ on 2¥ x 2X generated by the famil§S*t(S1, ..., S,; €): S1,...,S,€ S and
& > 0}, where

St(S1.....Sne)={(A.B)e2X x 2% BnS; c A®fori=1,....n}.
Reasoning as in Section 2 we can prove the following
Theorem 3.4. The pretopological uniform structur8™ is compatible with the conver-
genceS*. ConsequentlyST is a pretopology o2X and for eachA C X the family
Bs+(A)={S"(S1...., Sp;8)(A): S1,.... S, €S ande > 0}
is a local base o§* at A.

SinceST is a pretopology, it is topological if @honly if it verifies the condition
(AT) YVAC X,VU e Bg+(A),IV € Bs+(A),VB € V,IW € Bs+(B), W C U.
The condition £) from Proposition 2.15 works also for the struct§e.

Proposition 3.5. Suppose tha$ is a cover andS = X (S). Then8™ is a quasi-uniformity
if and only if

(¢) VS €S8,3e >0andS’ € S such thats® C §'.

Although there are many similarities between #e and S*-convergences, there are
also important differences. One of them is the behaviour of the convergekigé.dn
contrast with §X)~, S(X)™ is not topological in general.

Proposition 3.6. The convergencg X)™ is topological if and only i X, ) is discrete.

Proof. If (X,d) is discrete then(X)* is topological by Corollary 3.3(iii) and Proposi-
tion 3.5. The necessary condition follows from Theorem 3.7 belaw.

Theorem 3.7. Assume thaS = X(S). If ST is topological then every nondense subset
S € S has the property

(¢) 3¢ > 0andS’ € S such thats® C §'.

Proof. Suppose that there ¥ € S such thatSo # X andsg ¢ S for everys > 0 and every
S € S. We shall show that conditionrA™) does not hold. Let us takey € X andeg > 0
such thaf{xp}?° N Sp = @. Now putA = {xp} and consider the neighbourhood

U={DCX: DNSyC A®} € Bg+(A).
Take an arbitrary € Bs+(A) of the form
V={ECX.ENS;CA°fori=1,...,k}.
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ThenSé/" ¢ S=581U---US for everyn € N. Pickx, € Sé/" \ S for everyn € N. Then

the setB = {x,;: n € N} belongs tov. Now let
W={CcX:CnS/ CBfori=1,...,m}eBg+(B)

be arbitrary. Take: € N such that In <8 andy € BY" N Sg. ThenC = {y} € W but
C ¢ Ubecaus&€ NSg ¢ A*. O

Corollary 3.8. Suppose thaf = X' (S) andS < S Ncl(X).

(i) St istopological if and only if conditiorte) is verified
(i) If ST is topological thenS~ is topological
(iiiy (2%, S™) is topological if and only if2%, S—, S*) is bitopological.

Observe that ifS = | S then the inequalitys < S N cl(X) is equivalent to the property
that S is closed with respect to the closure operafos S — S € S. Applying Corol-
lary 3.8 we infer that if a bornolog¥ is closed with respect to the closure operator then
ST is topological if and only if the structure®™ and8™ are quasi-uniformities.

Notice that the converse of Corollary 3.8(ii) is not true in general (see, e.g., Proposi-
tion 3.6).

Recall that ¢X) and tl(X) are the families of all compact and totally bounded subsets
of (X, d), respectively.

Corollary 3.9.

(i) c(X)* is topological if and only ifX is locally compact
(i) tb(X)™T is topological if and only ifX is locally totally bounded.

Proof. (i) The sufficient condition follows frm Proposition 3.5. Now assume thafo™*

is topological and take any € X. If card(X) > 1, then{x} is not dense irX. Since{x} €

c(X), it follows from Theorem 3.7 th&tx }* is contained in a compact set for some 0.
(i) The proof is analogous. O

We now look at the relationship betwee&t-convergences and some other “upper”
convergences. Following Beer [5, p. 44] we will consider the miss topojogyn 2¥
determined byS. This topology has as a subbase all sets of the fptn@ X: A C §¢},
whereS € S.

We say that a subset of X strongly missesS, and writeA « S, if for eachS € S,
ANS=¢impliesA® N S =@ for somes > 0. For.A € 2X we write A « S if A < S for
eachA € A.

We will write § = | S if S contains all sets of the forr§ N C, whereS € S and
C e cl(X). Notice thatS = | S impliesS = | 4S.

Proposition 3.10.

@) fS=|ySthenS* < us;
(i) AeSt-lim A, impliesA € ug-lim A, ifand only ifA « S.
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Proof. (i) SupposeA; — A with respect taus and fixS € S, ¢ > 0; considerS; =S N
(A%)¢ € S; thenAN S1 =@ and thus4d, N S1 = ¥ eventually. This implies that, N S C A
eventually.

(i) = Suppose that there & € S such thatA N So = ¥ and A® N Sp # ¥ for each
e>0.PutA, = AY". ThenA € S*-lim A,, but (4,,) does nofus-converge taA.

(i) < Supposed; — A with respect taS™ andA N S = ¢; thenA® N S = @ for some
e >0andA, NS C A¢ eventually; thusA; N S =@ eventually. O

Corollary 3.11.

(i) If S=|ySthenST =pusonAifandonly if A <« S;

(i) If S=|yS and A « S thenS™ restricted toA is topological
(iii) The convergencesX)* andc(X)™ restricted tocl(X) are topologicaj
(iv) The convergenciia(X)™ restricted toc(X) is topological.

It follows from Corollary 3.11(i) that not every topologic&i~-convergence is equal to
the topologyus on cl(X). Indeed, 16X)™ is topological by Proposition 3.5 but(@®) does
not strongly miss bX) in general.

From Corollary 3.11 we infer also thatX)* amounts to the co-finite andX)™ to the
co-compact topology on €X). This leads to the

Corollary 3.12 (cf. [5, Theorem 5.1.6])f S is the family of all compact subsetsXfthen
the ST -convergence coincides with the co-compact topologgl 6x)).

It is well known (see, e.g., [17, p. 43]) that'Hconvergence implies the upper Kura-
towski convergence K on cl(X). So it is natural to ask whic™-convergencesimply the
convergence K. Recall thatd, — A for K* if Ls A; C A, where LsA; =), Uss: As-
We begin with the following

Proposition 3.13.

(i) Ifanet(A;)is St-convergenttod, then for evens € S, Ls(A; N S) C A;
(i) LetS be the family of all compact subsetsXf Then a net4,) is S*-convergent to
A if and only if for everyS € S, Ls(A; N S) C A.

Proof. (i) Let S € S and suppose thate Ls(A; N S); fix ¢ > 0; there existgy such that
forall r > 19, A, N S C A*/2, and for some > g, B(x, £/2) N A, N S # @; thusx € A¢ for
alle >0 andx € A.

(i) Apply (i), Proposition 3.10 and [5, Proposition 5.2.5]0

It follows from (ii) of the above proposition that K> ¢(X)™* on cl(X).
The following lemma was pointed out to us by G. Beer.

Lemma 3.14. If S = | S then the following conditions are equivalent
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() Vx € X, 38 > Osuch that{x})’ € S; )
(i) Forevery netA,) which isS*-convergent tad, we haveLs A, C A.

Proof. (i) = (ii) Let x € LsA, and takes > 0. Pick 0< § < £/2 such thafx}’ € S and
proceed as in the proof of Proposition 3.13(i).

(i) = (i) Suppose there isg € X such that{xo}'/" ¢ S for everyn e N. Then for
everyn € N and S € S there isx(,.s) € {xo}*/" \ S. It is clear that the net{x, s}) is
ST-convergentto the empty set, whitg € Ls{x(, 5)}. O

As a counterpart to the preceding lemma, we have
Lemma 3.15. If KT is stronger thanS™, everysS € S is relatively compact.

Proof. Suppose there exisse S which is not relatively compact; l€tk,) be a sequence
in § without converging subsequence and pyt= {x,,,;: m > n}. ThenLsA,, =@ but(A,)
is notST-convergent to the empty set 4 N S is not empty for every.. O

An application of the two previous lemmas yields

Corollary 3.16. K™ = St if and only if X is locally compact and generates the bornol-
ogy of relatively compact subsdtsjuivalently St is the co-compact topologly

Let us now consider the bornology(#) of all totally bounded subsets ¢X, d). Of
course, ¢X)T <th(X)™T.

Theorem 3.17. The following conditions are equivalent

(i) The metricd is complete
(i) th(X)* =c(X)¥;
(i) th(X)*T < KT oncl(X).

Proof. (i) = (ii) If d is complete then tX) < c(X) and (3.4) implies (ii).

(if) = (iii) is obvious.

(i) = (i) By Lemma 3.15 each totally bounded subsetXois relatively compact;
henced is complete. O

By Lemma 3.14, K <th(X)* on cl(X) if and only if (X, d) is locally totally bounded.
Thus we have

Corollary 3.18. K+ =th(X)™ oncl(X) if and only if (X, d) is locally compact and com-
plete.

We end this section with a reference g+, where l§X) is the family of all bounded
subsets oX. b(X)™ is topological by Proposition 3.5 drit is equal to the upper Attouch—
Wets convergence AW, as described in [5, p. 81]. By Corollary 3.3, AW=s(X)* if and
only if each bounded subset &fis finite and AW" = HT if and only if X is bounded.
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The relationship of the mai&*-convergences on ¢t) is expressed by the following
diagram:
Ht
W

A+

K+/ \tb(X)+
AN

7

c(X)*

s(x)*

Remark. All results of this sectionr valid for uniform-spaces.

4. S-convergences
We start with a result linking andS+ convergences:

Lemma 4.1. A net(A,) is ST-convergent toA if and only if the net(4, U A) is S-
convergent ta.

Proof. = If (A4;) is ST-convergent ta4, givens ande >0, (A, UA)NS= (A, NS)U
(AN S) C Af eventually; also it is clear th&, U A) is S™-convergent tA.

< If (A, UA)Is S‘-convergent tod, (A; U A) isST-convergenttod and(4, UA)N S
C A? eventually, so thati; NS € A® eventually. O

Corollary 4.2. LetS and W be covers o . Then

(i) S<WifandonlyifSt <W+;
(i) S=WwWifandonlyifSt =W and this impliesS™ =W~

Proof. If § < W and 4, & A then, by Lemma 4.14, U A X 4. Applying again
Lemma 4.1 we ge#t, — A with respect toV*. The necessary condition follows from
Corollary 3.3(ii).

(ii) follows from (i). O

Remark. Note that the mapping > {x} is continuous with respect t§. ThusS is ad-
missible because it is finer th& which is admissible.
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Now we come to the question of uniform propertiesSofor S1, ..., S, € S ande > 0
put
S(S1,.... S 8)={(A,B)e2X x2%: ANS; CB*, BNS; CA*, i=1,...,n}.

Then the family{S(S1, ..., Su; €): S1,..., 8, € S ande > 0} is a base of the pretopologi-
cal uniform structuré = S v8T.
From Theorems 2.11 and 3.4 we infer

Theorem 4.3. The pretopological uniform structur8 is compatible with the conver-
genceS. ConsequentIyS is a pretopology or2X and for eachA C X the family

Bg(A) ={S(S1..... Su: €)(A): S1..... 8, € S ande > 0}

is a local base of at A.

Of course S =S~ v St andS is topological if and only if it verifies the condition
(A) VACX,VUe BS.(A), Ve fBS-(A), VB eV,3W e fBS-(B), W CU.

Combining Propositions 2.15 and 3.5 we obtain

Proposition 4.4. Suppose tha$ is a cover andS = ¥(S). Then§ is a uniformity if and
only if

(¢) VS €S8,3e >0andS’ € S such thats® C §'.

Remark. It follows from Proposition 4.4 and Corollary 3.8 that if a bornolags closed
with respect to the closure operator, th#h is topological if and only if§ is a uniformity.

We will now look at the separation properties®fconvergences.

Recall that a pretopological spacg, =) is Ty if {z} is closed for each € Z, T, or
Hausdorffif every two distinct elements d have disjoint neighbourhoods, and, is dr
regularif for eachz € Z andU e Ny (z) there isV € N, (z) such thatV C U.

SinceS is a pretopology, it is T if and only if ﬂS is contained in the diagonal of
2X x 2X. Consequently2¥, S) is not Ty in general. Indeed, také € X such thatd  A.
Then(A, A) belongs to every element 8f

Proposition 4.5.

() (cl(Xx), S)is Ty if and only ifS is a cover ofX;
(i) LetS =]S. Then(cl(X),S) is Tz if and only if the conditior(i) in Lemma3.14is
verified.

Proof. (i) = Suppose that there ise€ X such thate ¢ S for everyS € S. Then({x}, ¥)
belongs to every element of elementSfA contradiction.
< An easy proof is omitted.
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(i) = Suppose there exisise X that does not verify the condition; then for every
and everyS € S there existsy(,,s) € {x}¥/"\ S. It can be checked that the Nk, )}
S-converges to bothx} andy; therefore theS-convergence is not Hausdorff.

< Let A and B be closed andd # B. We can assume that thereise A \ B.
Then {x}* N B = ¢ for somee > 0. Take O< § < ¢/2 such thatS = {x}’ € S. Put
U=5(S;8)(A) andV =S (S;8)(B). ThenUNV =0. O

It follows from Propositions 4.5(i) and 4.4 that if a bornolo§yis closed with respect
to small enlargements thehis a Hausdorff uniformity on €IX) x cl(X) and(cl(X), S) is
a completely regar topological space.

Proposition 4.6. LetS be a bornology. The following conditions are equivalent

() The empty set has a closed local baseSor
(i) ForeverySe S, there existss” € S such thatS < int(S");

(i) VAecl(X),VSeS,Ve>0,35 €8, S(5;¢/2)(A)° € ST(S; e)(A).

Proof. (i) implies (ii). Let S be inS; put ST(S)(¥) = {B: B N S = @}; then there exists
$" € S such thaS(8") ()¢ < ST (S)(¥); suppose thas ¢ int(S’); then there exists in S
which does not belong to i§") and we can find a sequen¢s,) in the complement of’
that converges ta. Thus, for every:, {x,} € ST(S") (@), and{x} = S-lim{x,} must be in
SH(S)(¥), a contradiction.

Note that condition (i) implies that th§-convergence is Hausdorff.

(i) implies (iii). Let S be in S and considers’ € S given by (ii); take anyD €
S(S/; 8/2)(A)S and let(D;) be a net of elements i8(S’; ¢/2)(A) which S-converges
to D; if x e DN S, thereis O< o < ¢/2 such tha{x}® € §" andD N {x}° € D? eventu-
ally; thusd(x, d;) < o for somer and someil; € D;. SinceD; € S(S'; ¢/2)(A), we obtain
thatd, € A¢/2 and finally thatx € A®.

(iii) implies (i). Apply (iii) to the empty set. O

Remarks. (a) If no S € S is dense, a weaker form of (iii) witd # @ implies (i).
(b) If S < Sncl(X), (ii) is equivalent tovS € S, 35" € S such thatS C int(s’).

Corollary 4.7. The small enlargement condition f&F implies regularity for(cl(X), S),
which, in turn, implies conditiofii) above.

We close the paper with a word on hit-and-miss topologies:ig a subfamily of ol X),
the hit-and-miss topology determined Ryis the supremum of the lower Vietoris topology
and of the miss topology 4 (see, for instance, [5,8,9,14,21]). Under mild assumptions on
the coverS, we have V¥ < S~ andS™ < ug by Propositions 2.1(i) and 3.10(i). Thus the
S-convergence, which is more “symmetric” imfure, is not comparable, except for the
Fell topology, to the corresponding hit-and-miss topology.
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