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Abstract

We study a family of convergences (actually pretopologies) in the hyperspace of a metric
that are generated by covers of the space. This family includes the Attouch–Wets, Fell, and
dorff metric topologies as well as the lower Vietoris topology. The unified approach leads t
developments and puts into perspective some classical results.
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0. Introduction

Let (X,d) be a metric space. For subsetsC andD of X, the Hausdorff distance be
tweenC andD is given byh(C,D) = inf{ε > 0: C ⊆ B(D,ε) andD ⊆ B(C, ε)}, where
B(A,ε) is theε-enlargement of the setA of radiusε. The Hausdorff distance induces

convergence H on the power set 2X by definingAt
H→ A wheneverh(At ,A) → 0. How-

ever, this convergence works well only when restricted to bounded (closed) subse
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unbounded sets convergence in the Hausdorff distance turns out to be too strong. Th
simple examples of sequences of subsets (such as the linesy = x/n in the plane) that do
not converge with respect to the Hausdorff distance, but should “reasonably” conver

One solution to overcome this difficulty is to modify the convergence H by elemen
a properly chosen familyS ⊆ 2X . The most celebrated example of this approach is the
called Attouch–Wets convergence AW, also called bounded-Hausdorff convergenc
convergence was initially introduced by Mosco [19] and studied later by Attouch and We
(see [1–3]). Fixingx0 ∈ X, we say that a net(At ) of subsets AW-converges toA ⊆ X if
for everyε > 0 andn ∈ N,

At ∩ B(x0, n) ⊆ B(A,ε) and A ∩ B(x0, n) ⊆ B(At , ε), eventually.

In this case convergence in the Hausdorffdistance has been modified by the familyS of
bounded sets.

Attouch–Wets convergence has been intensively investigated since the mid 80’s (
for references) and applied to study approximation and optimization problems. It turn
that besides the family of bounded subsets, other families were also useful for modifyin
the convergence H. For instance, in the case of a Banach spaceX one can consider th
family S of all norm (or weakly) compact subsets ofX [7].

In this paper we present a general theory ofS̃-convergences which are modified H
convergences through the use of various familiesS of subsets ofX. It turns out that all
such convergences are pretopologies and that the familiesS are essentially bornologie
onX. This explains the title of the paper.

Besides the trivial bornology (S = 2X) and the bornology of bounded sets, the borno
gies of finite sets, compact sets and totally bounded sets are also of general intere
common lower part is the lower Vietoris topology (Proposition 2.2.) while the correspon
ing upper parts are, respectively, the cofinite topology, the co-compact topology (s
the Fell topology is a particular̃S-convergence) and a newly identified object in the c
of totally bounded sets.

The paper is organized as follows: in Section 1 we recall some definitions and fix th
tation. Section 2 is devoted to lower bornological convergences, calledS−-convergences
We study relationships betweenS−-convergences and other “lower” convergences, s
as the lower Vietoris topology. Moreover, topological and uniform properties ofS− are
investigated. In Section 3 we discuss upper bornological convergencesS+. We show that
there are distinct differences in the behaviour ofS+ as compared toS−. And finally, in
Section 4 we consider the convergenceS̃ as the supremum ofS− andS+.

1. Preliminaries

Let Z be a nonempty set and letϕZ denote the family of all filters onZ. For eachz ∈ Z,
let Ul (z) denote the ultrafilter generated by{z}. A convergenceon Z is a mappingπ from
ϕZ to the family 2Z of all subsets ofZ which satisfies the following conditions:

(i) z ∈ π(Ul (z)) for all z in Z;
(ii) F ⊆ G impliesπ(F) ⊆ π(G) for all F ,G ∈ ϕZ.
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The pair(Z,π) is called aconvergence space. If F ∈ ϕZ and z ∈ π(F), then we say
that F π -convergesto z and we writez ∈ π -limF . The notion of convergence can
equivalently formulated in terms of nets (see, e.g., [12,13]). Thus every convergencπ on
Z can be treated as a mapping from the family of nets onZ into 2Z .

In this paper we will use both the net and the filter terminology.
If π1 andπ2 are two convergences onZ, we say thatπ2 is finer thanπ1, or thatπ1

is coarserthanπ2, and writeπ1 � π2, providedz ∈ π2-lim zt ⇒ z ∈ π1-lim zt for every
net(zt ) on Z. Let πi , i ∈ I , be a family of convergences onZ. For each filterF on Z we
denoteπ(F) = ⋂

i∈I πi(F). Thenπ is a convergence onZ finer than each convergenceπi ,
i ∈ I . We denote this uniquely defined convergence with

∨
i∈I πi and call it thesupremum

of the convergencesπi , i ∈ I .
Let (Z,π) be a convergence space andz ∈ Z. LetNπ (z) be the filter obtained by inter

secting all filters thatπ -converge toz. This filter is called theπ -neighbourhood filterat z,
and its elements areπ -neighbourhoodsof z.

A convergenceπ onZ is calledpretopological(or apretopology) if Nπ (z) π -converges
to z for eachz ∈ Z. If π is a pretopology onZ, the pair(Z,π) is called apretopological
space.

Let (X,U) be a quasi-uniform space andU−1 = {U−1: U ∈ U} be the conjugate quas
uniformity, whereU−1 = {(y, x): (x, y) ∈ U}. If S is a nonempty family of subsets ofX,
we may consider the following three convergences on 2X. Let (At ) be a net of subsets o
X andA ⊆ X. We say that the net(At ):

• S−-convergesto A, and we writeA ∈ S−-lim At or At
S−→ A, provided for eachS ∈ S

andU ∈ U there existst0 such thatA ∩ S ⊆ U−1(At ) for everyt � t0;

• S+-convergesto A, and we writeA ∈ S+-lim At or At
S+→ A, provided for eachS ∈ S

andU ∈ U there existst0 such thatAt ∩ S ⊆ U(A) for everyt � t0;
• S̃-convergesto A provided itS−-converges toA andS+-converges toA,

where U(A) = {y ∈ X: (x, y) ∈ U for somex ∈ A}, U−1(A) = {y ∈ X: (x, y) ∈
U−1 for somex ∈ A}.

For similar ideas see [4,6,7,20,22].
In this paper the underlying spaceX is a metric space. We use the natural uniform

of X, and the definitions ofS−, S+ andS̃ can be reformulated as follows:

At
S−→ A ⇔ ∀S ∈ S, ∀ε > 0, ∃t0, ∀t � t0, A ∩ S ⊆ Aε

t ,

At
S+→ A ⇔ ∀S ∈ S, ∀ε > 0, ∃t0, ∀t � t0, At ∩ S ⊆ Aε,

and

At
S̃→ A ⇔ ∀S ∈ S, ∀ε > 0, ∃t0, ∀t � t0, A ∩ S ⊆ Aε

t andAt ∩ S ⊆ Aε,

whereAε = B(A,ε) = ⋃
x∈A B(x, ε) andB(x, ε) is the open ball with centerx and ra-

diusε.
Note that ifX is a metric space andS = {X} then theS̃-convergence on the space

closed bounded subsets ofX is simply the H-convergence, i.e., the convergence in
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Hausdorff metric. We also denote H− = {X}−, H+ = {X}+, and V−, the lower Hausdorff
the upper Hausdorff, and the lower Vietoris convergence, respectively.

We now define some useful set-theoretical operations on families of subsets:

↓S = {A ⊆ X: A ⊆ S for someS ∈ S},
Σ(S) = {S1 ∪ S2 ∪ · · · ∪ Sn: Si ∈ S for i = 1,2, . . . , n; n ∈ N},

and we have the following properties:

S ⊆ ↓S, S ⊆ Σ(S), ↓Σ(S) = Σ(↓S),

↓{X} = 2X, ↓{∅} = {∅}.
By s(X), cl(X), b(X), tb(X) and c(X) we denote the families of all singletons ofX,

closed subsets ofX, bounded subsets ofX, totally bounded subsets ofX and compac
subsets ofX, respectively.

Let S,W ⊆ 2X be nonempty. We say thatS refinesW , and writeS � W , if for every
S ∈ S there existsW ∈ W with S ⊆ W . Observe thatS � W if and only if S ⊆ ↓W , and
as a consequence:S � W andW � S if and only if ↓S = ↓W .

A bornologyon a setX is a familyS of subsets ofX such that:

(1) S is a cover ofX,
(2) S is closed under subsets and
(3) S is closed under finite unions (see [15]).

The set convergences defined above are generated by families of subsets wh
essentially bornologies.

From now on we assume thatX is a metric space andd its metric.

2. S−-convergences

We begin with the following observations onS−-convergences:

∅ ∈ S−-lim At for everyS and every net(At ), (2.1)

if A ∈ S−-lim At andB ⊆ A, thenB ∈ S−-lim At, (2.2)

S− = (↓S)− = (
Σ(S)

)− = (
Σ(↓S)

)− = (↓(
Σ(S)

))−
, (2.3)

if S � W, thenS− � W−. (2.4)

Proposition 2.1. LetS be a cover ofX. Then

(i) V− � S− � H−;
(ii) V − = s(X)− andH− = {X}−.

Proof. Let At andA be elements of 2X andε > 0.
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(i) If At
H−→ A, it is clear thatAt

S−→ A, as for everyS ∈ S, A ∩ S ⊆ A ⊆ Aε
t eventually.

Suppose thatAt
S−→ A and thatB(x, ε) ∩ A 
= ∅; pick y ∈ B(x, ε) ∩ A, S ∈ S with y ∈ S

and chooser > 0 such thatd(x, y) + r < ε; then there existst0 such thatA ∩ S ⊆ Ar
t for

all t � t0 and for every sucht we can chooseat ∈ At with d(y, at) < r. Thusd(x, at) �
d(x, y) + d(y, at) < d(x, y) + r < ε andB(x, ε) ∩ At 
= ∅. This shows thatAt

V−→ A.

(ii) By (i) we only need to prove that s(X)− � V−. Let At
V−→ A and pickx0 ∈ X and

ε > 0. We can suppose thatx0 ∈ A; thenB(x0, ε) ∩ A 
= ∅ and there existst0 such that
B(x0, ε) ∩ At 
= ∅ for all t � t0. This shows thatx0 ∈ Aε

t for all t � t0. Also, it is obvious
that H− = {X}−. �
Remark. If S contains a nonempty set then theS−-convergence is admissible if and on
if S is a cover ofX. Recall that a convergence on a hyperspace is calledadmissibleif the
mappingx �→ {x} is an embedding. It is not hard to show that the mappingx �→ {x} is S−-
continuous for every familyS and ifS is a cover ofX then the inverse mapping{x} �→ x

is continuous as well. Consequently,S− is admissible providedS is a cover ofX. Observe
that this fact follows also from Proposition 2.1(i), because V− and H− are admissible. Now
assume that forS 
= {∅},S− is admissible and suppose thatS is not a cover ofX, i.e., there

existsx ∈ X \ ⋃
S. Take anyy from

⋃
S and putxn = y for n ∈ N. Then{xn} S−→ {x} but

xn 
→ x, a contradiction.

Proposition 2.2. V− = S− if and only if everyS ∈ S is totally bounded.

Proof. Suppose eachS ∈ S is totally bounded and letAt
V−→ A, S ∈ S andε > 0; then

A ∩ S is totally bounded and there existx1, . . . , xn ∈ A such thatA ∩ S ⊆ ⋃n
1 B(xi, ε/2).

By V−-convergence of(At ) to A,

∃t0, ∀t � t0, At ∩ B(xi, ε/2) 
= ∅ for i = 1, . . . , n;
pick yi ∈ At ∩ B(xi, ε/2); then

A ∩ S ⊆
n⋃

i=1

B(xi, ε/2) ⊆
n⋃

i=1

B(yi, ε) ⊆ Aε
t for all t � t0.

Conversely, suppose that there existsS ∈ S which is not totally bounded; then the
existsε > 0 such thatS �

⋃n
1 B(xi, ε) for all {x1, . . . , xn} ⊆ S. If t = {x1, . . . , xn} and

s = {y1, . . . , ym} belong to
⋃∞

1 Xk , put t � s if and only if t ⊆ s and define the net(At )

on 2X by

At =
n⋃

i=1

B(xi, ε/2).

Then(At ) is notS−-convergent toS, asS is not contained in anyAε/2
t , while At

V−→ S; to
see this picky ∈ S, σ > 0 and putt0 = {y}. ThenAt ∩ B(y,σ ) 
= ∅ for all t � t0. �
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Corollary 2.3. For every coverS:

(i) (localization) If A ⊆ X is such thatA ∩ S is totally bounded for eachS ∈ S, then

At
V−→ A if and only ifAt

S−→ A;

(ii) If A is totally bounded, thenAt
V−→ A if and only ifAt

S−→ A.

Now, given two coversS andW , what are the conditions forS andW to generate the
same convergence?

We know that ifS refinesW , thenS− � W− but the reverse implication is not tru
in general: takeX = R2, W the cover of all singletons andS = W ∪ {the unit disc}. By
Proposition 2.2,S− =W− = V−, whileS (or Σ(S)) is not a refinement ofW .

We can, however, proceed in the spirit of Proposition 2.2 provided the right generaliz
tion of total boundedness is introduced:

Definition 2.4. LetS be a cover ofX; a subsetA of X is totally bounded with respect toS,
or A is S-totally bounded, if

∀ε > 0, ∃S1, . . . , Sk ∈ S, A ⊆ (A ∩ S1)
ε ∪ · · · ∪ (A ∩ Sk)

ε.

We note the following properties ofS-total boundedness:

(a) Every subset of eachS ∈ S is S-totally bounded;
(b) If A1 andA2 areS-totally bounded, thenA1 ∪ A2 is S-totally bounded;
(c) If S is the cover of all singletons,S-total boundedness is the usual total boundedn;
(d) If the coverS refines the coverW , thenS-totally bounded sets are alsoW-totally

bounded.

Theorem 2.5. LetS andW be covers ofX. The following are equivalent:

(i) For all A ⊆ X and allS ∈ S, A ∩ S is W-totally bounded;
(ii) The family ofS-totally bounded subsets ofX is included in the family ofW-totally

bounded subsets ofX;
(iii) S− � W−.

Proof. (i) ⇒ (ii) Let B ⊂ X beS-totally bounded and pickε > 0; there existS1, . . . , Sm

∈ S such thatB ⊂ (B ∩ S1)
ε/2 ∪ · · · ∪ (B ∩ Sm)ε/2; by (i) the setsB ∩ S1, . . . ,B ∩ Sm

areW-totally bounded and there existW1
1 , . . . ,W1

k1
, . . . ,Wm

1 , . . . ,Wm
km

∈ W such that for
j = 1,2, . . . ,m,

B ∩ Sj ⊆ (
B ∩ Sj ∩ W

j

1

)ε/2 ∪ · · · ∪ (
B ∩ Sj ∩ W

j
kj

)ε/2;
thus

B ⊆
m⋃ kj⋃(

B ∩ Sj ∩ W
j
r

)ε ⊆
m⋃ kj⋃(

B ∩ W
j
r

)ε
.

j=1 r=1 j=1 r=1
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(ii) ⇒ (i) is obvious.

(i) ⇒ (iii) Suppose At
W−→ A and let S ∈ S and ε > 0 be given. There exis

W1, . . . ,Wk ∈ W such thatA ∩ S ⊆ ⋃k
1(A ∩ S ∩ Wj)

ε/2 andt0 such thatA ∩ Wj ⊆ A
ε/2
t

for all t � t0 andj = 1, . . . ,m; therefore

A ∩ S ⊆
k⋃

j=1

(A ∩ S ∩ Wj)
ε/2 ⊆

k⋃
j=1

(A ∩ Wj)
ε/2 ⊆ Aε

t

for all t � t0. HenceAt
S−→ A.

(iii) ⇒ (i) Suppose there existsA ⊆ X such thatT = A∩S is notW-totally bounded for
someS ∈ S; then there existsε > 0 such thatT �

⋃m
1 (T ∩Wi)

ε for all W1, . . . ,Wm ∈ W ;
put t = {W1, . . . ,Wm} ⊂ W and order the set

⋃∞
1 Wn as in the proof of Proposition 2.2

PutBt = (T ∩ W1) ∪ · · · ∪ (T ∩ Wm); then it is clear thatBt
W−→ T and thatBt

S−

→ T , as

T ∩ S = T � Bε
t . �

Let us denote byS� the family of allS-totally bounded subsets ofX.

Corollary 2.6.

(i) S− =W− if and only ifS� =W�;
(ii) There areS−-convergences that are not comparable: take, for example,X = R2 and

S andW the covers consisting of horizontal and vertical lines, respectively;
(iii) GivenA ⊆ X, every subset ofA is S-totally bounded if and only ifS− = (S ∪ {A})−;
(iv) S− = H− if and only if every subset ofX is S-totally bounded, as{X}� = 2X;
(v) (localization) If A ⊂ X is such that for everyW ∈ W the setA ∩ W is S-totally

bounded, thenAt
S−→ A ⇒ At

W−→ A.

In the list, (a)–(d), of properties ofS-total boundedness, we did not mention subset
turns out that, in general,S� is not closed under subsets (see Example 2.7 below).

Another natural generalization of total boundedness is the following: say that a suB

of X is weaklyS-totally boundedif ∀ε > 0, ∃S1, . . . , Sk ∈ S such thatB ⊆ Sε
1 ∪ · · · ∪ Sε

k .
It is clear that ifS is the cover of all singletons, weakS-total boundedness andS-total
boundedness agree. Denote byS� the collection of all weaklyS-totally bounded subset
of X. ThenS� is closed under finite unions and subsets,S� ⊆ S� and(S�)� = S�. The next
example shows however, thatS� is too large for our purposes.

Example 2.7. Let X = R2, S the cover of vertical lines. The stripeB = {(x, y): 0 � x � 1}
is S-totally bounded, but its subsetA = {(x, y) ∈ B: 0 < x � 1, y = 1/x} is not; by
Corollary 2.6,(S ∪ {B})−-convergence is strictly stronger thanS−-convergence, while
S� = (S ∪ {B})�, asB is weaklyS-totally bounded.

As an application of Theorem 2.5, we have
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Proposition 2.8. The following are equivalent:

(i) S� is closed under subsets;
(ii) S− = S−

� ;
(iii) S� = (S�)�.

We now turn our attention to the question of convergence and uniform properties oS−.
The first observation is thatS−-convergence need not verify the iterated limit conditi
Consequently, it is not topological in general.

Example 2.9. Let X = R2, S the cover of horizontal lines and putA = {(x, y): x � 0,

y = 0}; for eachn ∈ N consider

Bn =
{
(x, y): x � 0, y = 1

2nex

}
.

ThenBn
S−→ A, as for each horizontal linel andε > 0, eitherA ∩ l = ∅ or A ∩ l = A ⊆ Bε

n

for all n > 1/(2ε).
Now, for eachn andm in N, consider them horizontal lines

ki =
{
(x, y): y = i

2nm

}
(1� i � m)

and putCn
m = Bn ∩ {k1 ∪ · · · ∪ km}. ThenCn

m

S−→ Bn asm → ∞. Also theCn
m’s do not

S−-converge toA asA is unbounded and eachCn
m is finite.

However, nontopological convergences arenot unusual in the theory of hyperspac
For instance, the well-known Kuratowski convergence is also not topological in gene

Nontopological convergences build a wide spectrum: from very general (no cons
at all) to fairly specialized (such as pretopologies) which are close to ordinary topo
(see, e.g., [10] for more details on general convergences).

By definition,S−-convergence is a modification of the lower Hausdorff converge
H− by the familyS. It is well known (see, e.g., [11]) that the convergence H− can be
described in terms of quasi-uniformities. The family{H−

ε : ε > 0}, whereH−
ε = {(A,B) ∈

2X × 2X: A ⊆ Bε}, is a base of a quasi-uniformity on 2X compatible with H−.
Let us consider the familyS− = {S−(S1, . . . , Sn; ε): S1, . . . , Sn ∈ S andε > 0}, where

S−(S1, . . . , Sn; ε) = {
(A,B) ∈ 2X × 2X: A ∩ Si ⊆ Bε for i = 1, . . . , n

}
.

One might presume that this family generates a kind of uniform structure on 2X that
is related toS−. However, sinceS− is not topological in general, this structure cannot
expected to be quasi-uniform (quasi-uniformities are always compatible with topologic
convergences).

Observe that the familyS− is a filter-base. LetS− denote the filter on 2X ×2X generated
by S−. Of course, each element ofS− contains the diagonal of 2X ×2X . Consequently, the
family S− is a pretopological uniform structure on 2X. It can be shown that in general th
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filter S− is neither symmetric (i.e.,S− 
= (S−)−1) nor composable (S− � S− ◦ S−). This
means thatS− is neither a uniformity nor a quasi-uniformity in general.

Now we come to the question of howS− is related toS−-convergence. It is know
(see, e.g., [16,18]) that every pretopological uniform structure induces a pretopology
underlying space. Thus ifS− is compatible withS−, the convergenceS− is a pretopology
on 2X.

Pretopologies are convergences which have convergent neighbourhood filters (se
Thus they can be described in terms of total systems of neighbourhoods. Howev
main difference with topologies is that pretopologies need not admit neighbourhood
generated by open sets (this property is equivalent to the iterated limit condition).

The total system of neighbourhoods of the pretopologyλ(S−) induced byS− on 2X is
equal to{S−(A): A ⊆ X}, whereS−(A) denotes the section filter ofS− atA, i.e., the filter
on 2X generated by the sets

(N) S−(S1, . . . , Sn; ε)(A) = {B ⊂ X: A ∩ Si ⊆ Bε for i = 1, . . . , n},

whereS1, . . . , Sn ∈ S andε > 0.

Lemma 2.10. The pretopological uniform structureS− is compatible with the convergen
S−, i.e.,λ(S−) = S−.

Proof. Let S1, . . . , Sn ∈ S andε > 0 be given. Take a net(At ) of subsets ofX. It follows
immediately from (N) thatAt ∈ S−(S1, . . . , Sn; ε)(A) if and only if A ∩ Si ⊆ Aε

t for i =
1, . . . , n. Consequently,λ(S−) = S−. �

From Lemma 2.10 we infer the following

Theorem 2.11. The convergenceS− is a pretopology on2X . For eachA ⊆ X the family

BS−(A) = {
S−(S1, . . . , Sn; ε)(A): S1, . . . , Sn ∈ S andε > 0

}
is a local base ofS− at A.

Corollary 2.12. The convergenceS− is topological if and only if

(∆−) ∀A ⊆ X, ∀U ∈ BS−(A), ∃V ∈ BS−(A), ∀B ∈ V, ∃W ∈ BS−(B), W ⊆ U.

Proof. Condition (∆−) is just the translation, in terms of neighbourhood bases, of
iterated limit condition (see [17], [13, p. 153]).Thus the corollary follows from the theo
rem. �

The following corollary follows immediately from Lemma 2.10.

Corollary 2.13. If the pretopological uniform structureS− is quasi-uniform, the conver
genceS− is topological.
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The reverse implication is not true in general.

Example 2.14. Let X be the space of real numbers andS the family of all finite sub-
sets ofX. ThenS− is topological by Proposition 2.1. We show thatS− � S− ◦ S−. Take
y1, y2 ∈ X such that|y1 − y2| > ε > 0 and putS = {y1, y2}. ThenS−(S; ε) ∈ S−. Let
V = S−(S1, . . . , Sn; δ) ∈ S− be arbitrary. SinceS andSi (i = 1, . . . , n) are finite, there
arec1, c2 ∈ X \ (S ∪ S1 ∪ · · · ∪ Sn) such that|c1 − y1| < δ and|c2 − y2| < δ. PutA = S,
B = {y1} and C = {c1, c2}. ThenA ∩ Si ⊆ {y1, y2} ⊆ Cδ and C ∩ Si = ∅ ⊆ Bδ . Thus
(A,B) ∈ V ◦ V but (A,B) /∈ S−(S; ε) becauseA ∩ S = {y1, y2} � Bε .

The following is a sufficient condition forS− to be quasi-uniform.

Proposition 2.15. Assume that

(ε) ∀S ∈ S, ∃ε > 0 andS′ ∈ S such thatSε ⊆ S′.

ThenS− is a quasi-uniformity. Consequently,S− is topological.

Proof. It is enough to show thatS− ⊆ S− ◦ S−. Take an arbitraryS−(S1, . . . , Sn; ε) ∈ S−.
Considerε1, . . . , εn > 0 andS′

1, . . . , S
′
n ∈ S such thatSεi

i ⊆ S′
i (i = 1, . . . , n) and pickσ ,

0 < σ < min(ε/2, ε1, . . . , εn). ThenV = S−(S′
1, . . . , S

′
n;σ) ∈ S−. If (A,B) ∈ V ◦ V then

there isC ⊆ X such thatA ∩ S′
i ⊆ Cσ andC ∩ S′

i ⊆ Bσ for i = 1, . . . , n. We have to show
thatA ∩ Si ⊆ Bε for i = 1, . . . , n. If x belongs toA ∩ Si thenx ∈ A ∩ S

εi

i ⊆ A ∩ S′
i ⊆ Cσ .

Hence there isc from C such thatd(c, x) < σ . Consequently,c ∈ (A ∩ S′
i )

σ ⊆ S
εi

i ⊆ S′
i

andc ∈ C ∩ S′
i ⊆ Bσ . Finally,x ∈ (Bσ )σ ⊆ Bε. �

Under some additional assumptions onS, the condition (ε) is also necessary.

Proposition 2.16. Suppose thatS is a cover andS = Σ(S). If S− is quasi-uniform, then
S has the property(ε).

Proof. We can assume that card(X) > 1. Now suppose that condition (ε) is not satisfied
Then there isS0 ∈ S such that

for everyε > 0 and everyS′ ∈ S, Sε
0 � S′.

BecauseS is a cover andS = Σ(S) we can assume that card(S0) > 1. Take two different
elementss andr from S0 and pickδ, 0 < δ < (1/2)d(s, r). We will show that for every
ε > 0 andS1, . . . , Sn ∈ S,

S−(S1, . . . , Sn; ε) ◦ S−(S1, . . . , Sn; ε) � S−(S0; δ).

Take arbitraryε > 0 andS1, . . . , Sn ∈ S. ThenSσ
0 � S = S1 ∪ · · · ∪ Sn for any σ , 0 <

σ < min(δ, ε). Pick anyx ∈ Sσ
0 \ S. Then there iss0 ∈ S0 such thatd(s0, x) < σ . We

can assume thatd(s0, s) > δ, otherwise we would taker instead ofs. Put A = {x, s0},
B = {s} andC = {x}. Then we haveA ∩ Si ⊆ {s0} ⊆ {x}σ ⊆ Cε andC ∩ Si = ∅ ⊆ Bε for
i = 1,2, . . . , n. But (A,B) /∈ S−(S0; δ) becauses0 ∈ A ∩ S \ Bδ . �
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Observe that ifS is a bornology, condition (ε) means thatS is closed with respect t
small enlargements:

(E) For everyS ∈ S there isε > 0 such thatSε ∈ S.

Thus for bornologies we have the following

Proposition 2.17. The structureS− is quasi-uniform if and only ifS is closed with respec
to small enlargements.

Example 2.18. Let x0 ∈ X and consider the coverS of balls centered atx0. S−-
convergence is the lower Attouch–Wets convergence AW− (see [5, p. 81]); sinceS verifies
the condition in Proposition 2.15, AW− is topological. As in general,S− = (↓S)−, AW− is
equal to b(X)−, where b(X) is the family of all bounded subsets ofX. By Proposition 2.2
AW− = V− if and only if each bounded subset ofX is totally bounded, and AW− = H− if
and only ifX is bounded, by Corollary 2.6(iv).

Remark. All results of this section are valid for uniform spaces.

3. S+-convergences

As with S−-convergences, we begin with a few observations:

X ∈ S+-lim At for everyS and every net(At ), (3.1)

if A ∈ S+-lim At andB ⊇ A, thenB ∈ S+-lim At, (3.2)

S+ = (↓S)+ = (
Σ(S)

)+ = (
Σ(↓S)

)+ = (↓(
Σ(S)

))+
, (3.3)

if S1 � S2, thenS+
1 � S+

2 . (3.4)

Proposition 3.1. LetS be a cover ofX:

(i) s(X)+ � S+ � {X}+;
(ii) {X}+ = (2X)+ = H+;
(iii) A ∈ s(X)+-lim At if and only if the upper limitLsι At of (At ) with respect to the

discrete topology ofX is contained inĀ.

Proof. (i) and (ii) are clear asS is a cover. (iii) Suppose thatA ∈ s(X)+-lim At andx ∈
Lsι At = ⋂

t

⋃
r�t Ar ; then∀ε > 0, ∃t0, ∀t � t0, At ∩ {x} ⊆ Aε; there existsr � t0 with

x ∈ Ar and thereforex ∈ Aε; thus Lsι At ⊆ Ā.
Conversely, suppose that Lsι At ⊆ Ā and fixp ∈ X andε > 0; if p /∈ Lsι At , there exists

t such that for allr � t , p /∈ Ar andAr ∩{p} ⊆ Aε; if p ∈ Lsι At , p ∈ Ā andAt ∩{p} ⊆ Aε

for everyt . �
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Remark. Note that a net(xt ) of points ofX is s(X)+-convergent tox ∈ X if and only
if y 
= x implies y 
= xt eventually; thus the restriction of s(X)+ to X is the cofinite
topology and s(X)+ is not admissible in general. It turns out that the only admissibleS+-
convergence is H+. Of course, H+ is admissible. If card(X) = 1 thenS+ = H+. Assume
now that card(X) > 1, S+ is admissible and suppose thatS does not contain the setX.
By (3.3) we can assume thatS = Σ(S). Thus we can directS upwardly by inclusion and
pick xS ∈ X \S for eachS ∈ S. Then the net({xS}) is S+-convergent to every subset ofX.
Taking anyx, y ∈ X we infer from admissibility ofS+ that(xS) converges tox andy, i.e.,
x = y. Consequently, card(X) = 1, a contradiction.

We now determine when two covers generate the same convergence.

Theorem 3.2. LetS andW be covers ofX. The following conditions are equivalent:

(i) S � Σ(W);
(ii) S+ � W+.

Proof. (i) ⇒ (ii) follows from (3.3) and (3.4).
(ii) ⇒ (i) SupposeS does not refineΣ(W); then there existsS ∈ S such thatS �

W1 ∪ · · · ∪ Wn for every finite union of elements ofW ; for everyt = (W1, . . . ,Wn) pick
xt ∈ S \ ⋃n

1 Wi . If t = (W1, . . . ,Wn) andv = (W ′
1, . . . ,W

′
m), put t � v if and only if W1 ∪

· · · ∪Wn ⊆ W ′
1 ∪ · · · ∪W ′

m; it is then easy to see that the net({xt }) isW+-convergent—bu
notS+-convergent—to the empty set.�

We remark that the empty set is isolated forS+ if and only if X ∈ S, that is ifS+ = H+.

Corollary 3.3. LetS andW be covers ofX.

(i) S+ =W+ if and only if↓Σ(S) = ↓Σ(W);
(ii) If S+ � W+, thenS− � W−;
(iii) S+ = s(X)+ if and only if everyS ∈ S is finite;
(iv) S+ = H+ if and only if there existS1, . . . , Sk ∈ S such thatX = S1 ∪ · · · ∪ Sk ;
(v) s(X)+ = H+ if and only ifX is finite;
(vi) There are noncomparableS+-convergences.

Theorem 3.2 and Corollary 3.3(i) are in marked contrast with Theorem 2.5 and C
lary 2.6(i).

Also the example given before Definition 2.4 shows that, in general,S− � W− does
not implyS+ � W+.

We will show later (see Proposition 3.6) thatS+-convergence is not topological in ge
eral. However, conditions which ensure thatS+-convergence is topological are similar
those forS−-convergence.
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Using the same notation as in Section 2, let us consider the pretopological un
structureS+ on 2X × 2X generated by the family{S+(S1, . . . , Sn; ε): S1, . . . , Sn∈ S and
ε > 0}, where

S+(S1, . . . , Sn; ε) = {
(A,B) ∈ 2X × 2X: B ∩ Si ⊆ Aε for i = 1, . . . , n

}
.

Reasoning as in Section 2 we can prove the following

Theorem 3.4. The pretopological uniform structureS+ is compatible with the conve
genceS+. Consequently,S+ is a pretopology on2X and for eachA ⊆ X the family

BS+(A) = {
S+(S1, . . . , Sn; ε)(A): S1, . . . , Sn ∈ S andε > 0

}
is a local base ofS+ at A.

SinceS+ is a pretopology, it is topological if and only if it verifies the condition

(∆+) ∀A ⊆ X, ∀U ∈ BS+(A), ∃V ∈ BS+(A), ∀B ∈ V, ∃W ∈ BS+(B), W ⊆ U.

The condition (ε) from Proposition 2.15 works also for the structureS+.

Proposition 3.5. Suppose thatS is a cover andS = Σ(S). ThenS+ is a quasi-uniformity
if and only if

(ε) ∀S ∈ S, ∃ε > 0 andS′ ∈ S such thatSε ⊆ S′.

Although there are many similarities between theS− andS+-convergences, there a
also important differences. One of them is the behaviour of the convergence s(X)+. In
contrast with s(X)−, s(X)+ is not topological in general.

Proposition 3.6. The convergences(X)+ is topological if and only if(X,d) is discrete.

Proof. If (X,d) is discrete then s(X)+ is topological by Corollary 3.3(iii) and Propos
tion 3.5. The necessary condition follows from Theorem 3.7 below.�
Theorem 3.7. Assume thatS = Σ(S). If S+ is topological then every nondense sub
S ∈ S has the property

(ε′) ∃ε > 0 andS′ ∈ S such thatSε ⊆ S′.

Proof. Suppose that there isS0 ∈ S such that̄S0 
= X andSε
0 � S for everyε > 0 and every

S ∈ S. We shall show that condition (∆+) does not hold. Let us takex0 ∈ X andε0 > 0
such that{x0}ε0 ∩ S0 = ∅. Now putA = {x0} and consider the neighbourhood

U = {D ⊆ X: D ∩ S0 ⊆ Aε} ∈ BS+(A).

Take an arbitraryV ∈ BS+(A) of the form

V = {E ⊆ X: E ∩ Si ⊆ Aσ for i = 1, . . . , k}.
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ThenS
1/n
0 � S = S1 ∪ · · · ∪ Sk for everyn ∈ N. Pickxn ∈ S

1/n
0 \ S for everyn ∈ N. Then

the setB = {xn: n ∈ N} belongs toV. Now let

W = {C ⊆ X: C ∩ S′
i ⊆ Bδ for i = 1, . . . ,m} ∈ BS+(B)

be arbitrary. Taken ∈ N such that 1/n < δ andy ∈ B1/n ∩ S0. ThenC = {y} ∈ W but
C /∈ U becauseC ∩ S0 � Aε. �
Corollary 3.8. Suppose thatS = Σ(S) andS � S ∩ cl(X).

(i) S+ is topological if and only if condition(ε) is verified;
(ii) If S+ is topological thenS− is topological;
(iii) (2X,S+) is topological if and only if(2X,S−,S+) is bitopological.

Observe that ifS = ↓S then the inequalityS � S ∩ cl(X) is equivalent to the propert
that S is closed with respect to the closure operatorS � S �→ S̄ ∈ S. Applying Corol-
lary 3.8 we infer that if a bornologyS is closed with respect to the closure operator t
S+ is topological if and only if the structuresS− andS+ are quasi-uniformities.

Notice that the converse of Corollary 3.8(ii) is not true in general (see, e.g., Pro
tion 3.6).

Recall that c(X) and tb(X) are the families of all compact and totally bounded sub
of (X,d), respectively.

Corollary 3.9.

(i) c(X)+ is topological if and only ifX is locally compact;
(ii) tb(X)+ is topological if and only ifX is locally totally bounded.

Proof. (i) The sufficient condition follows from Proposition 3.5. Now assume that c(X)+
is topological and take anyx ∈ X. If card(X) > 1, then{x} is not dense inX. Since{x} ∈
c(X), it follows from Theorem 3.7 that{x}ε is contained in a compact set for someε > 0.

(ii) The proof is analogous. �
We now look at the relationship betweenS+-convergences and some other “upp

convergences. Following Beer [5, p. 44] we will consider the miss topologyµS on 2X

determined byS. This topology has as a subbase all sets of the form{A ⊆ X: A ⊆ Sc},
whereS ∈ S.

We say that a subsetA of X strongly missesS, and writeA � S, if for eachS ∈ S,
A ∩ S = ∅ impliesAε ∩ S = ∅ for someε > 0. ForA ⊆ 2X we writeA � S if A � S for
eachA ∈A.

We will write S = ↓clS if S contains all sets of the formS ∩ C, whereS ∈ S and
C ∈ cl(X). Notice thatS = ↓S impliesS = ↓clS.

Proposition 3.10.

(i) If S = ↓clS thenS+ � µS ;
(ii) A ∈ S+-lim At impliesA ∈ µS -lim At if and only ifA � S.
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Proof. (i) SupposeAt → A with respect toµS and fixS ∈ S, ε > 0; considerS1 = S ∩
(Aε)c ∈ S; thenA∩S1 = ∅ and thusAt ∩S1 = ∅ eventually. This implies thatAt ∩S ⊆ Aε

eventually.
(ii) ⇒ Suppose that there isS0 ∈ S such thatA ∩ S0 = ∅ andAε ∩ S0 
= ∅ for each

ε > 0. PutAn = A1/n. ThenA ∈ S+-lim An but (An) does notµS -converge toA.
(ii) ⇐ SupposeAt → A with respect toS+ andA ∩ S = ∅; thenAε ∩ S = ∅ for some

ε > 0 andAt ∩ S ⊆ Aε eventually; thusAt ∩ S = ∅ eventually. �
Corollary 3.11.

(i) If S = ↓clS thenS+ = µS onA if and only ifA � S;
(ii) If S = ↓clS andA � S thenS+ restricted toA is topological;
(iii) The convergencess(X)+ andc(X)+ restricted tocl(X) are topological;
(iv) The convergencetb(X)+ restricted toc(X) is topological.

It follows from Corollary 3.11(i) that not every topologicalS+-convergence is equal t
the topologyµS on cl(X). Indeed, b(X)+ is topological by Proposition 3.5 but cl(X) does
not strongly miss b(X) in general.

From Corollary 3.11 we infer also that s(X)+ amounts to the co-finite and c(X)+ to the
co-compact topology on cl(X). This leads to the

Corollary 3.12 (cf. [5, Theorem 5.1.6]).If S is the family of all compact subsets ofX then
theS+-convergence coincides with the co-compact topology oncl(X).

It is well known (see, e.g., [17, p. 43]) that H+-convergence implies the upper Kur
towski convergence K+ on cl(X). So it is natural to ask whichS+-convergences imply th
convergence K+. Recall thatAt → A for K+ if Ls At ⊆ A, where LsAt = ⋂

t

⋃
s�t As .

We begin with the following

Proposition 3.13.

(i) If a net(At ) is S+-convergent toA, then for everyS ∈ S, Ls(At ∩ S) ⊆ Ā;
(ii) LetS be the family of all compact subsets ofX. Then a net(At ) is S+-convergent to

A if and only if for everyS ∈ S, Ls(At ∩ S) ⊆ Ā.

Proof. (i) Let S ∈ S and suppose thatx ∈ Ls(At ∩ S); fix ε > 0; there existst0 such that
for all t � t0, At ∩ S ⊆ Aε/2, and for somet � t0, B(x, ε/2) ∩ At ∩ S 
= ∅; thusx ∈ Aε for
all ε > 0 andx ∈ Ā.

(ii) Apply (i), Proposition 3.10 and [5, Proposition 5.2.5].�
It follows from (ii) of the above proposition that K+ � c(X)+ on cl(X).
The following lemma was pointed out to us by G. Beer.

Lemma 3.14. If S = ↓S then the following conditions are equivalent:
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(i) ∀x ∈ X, ∃δ > 0 such that{x}δ ∈ S;
(ii) For every net(At ) which isS+-convergent toA, we haveLsAt ⊆ Ā.

Proof. (i) ⇒ (ii) Let x ∈ LsAt and takeε > 0. Pick 0< δ < ε/2 such that{x}δ ∈ S and
proceed as in the proof of Proposition 3.13(i).

(ii) ⇒ (i) Suppose there isx0 ∈ X such that{x0}1/n /∈ S for everyn ∈ N. Then for
everyn ∈ N andS ∈ S there isx(n,S) ∈ {x0}1/n \ S. It is clear that the net({x(n,S)}) is
S+-convergent to the empty set, whilex0 ∈ Ls{x(n,S)}. �

As a counterpart to the preceding lemma, we have

Lemma 3.15. If K+ is stronger thanS+, everyS ∈ S is relatively compact.

Proof. Suppose there existsS ∈ S which is not relatively compact; let(xn) be a sequenc
in S without converging subsequence and putAn = {xm: m > n}. Then LsAn = ∅ but(An)

is notS+-convergent to the empty set asAn ∩ S is not empty for everyn. �
An application of the two previous lemmas yields

Corollary 3.16. K+ = S+ if and only ifX is locally compact andS generates the borno
ogy of relatively compact subsets(equivalently,S+ is the co-compact topology).

Let us now consider the bornology tb(X) of all totally bounded subsets of(X,d). Of
course, c(X)+ � tb(X)+.

Theorem 3.17. The following conditions are equivalent:

(i) The metricd is complete;
(ii) tb(X)+ = c(X)+;
(iii) tb(X)+ � K+ on cl(X).

Proof. (i) ⇒ (ii) If d is complete then tb(X) � c(X) and (3.4) implies (ii).
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) By Lemma 3.15 each totally bounded subset ofX is relatively compact

henced is complete. �
By Lemma 3.14, K+ � tb(X)+ on cl(X) if and only if (X,d) is locally totally bounded

Thus we have

Corollary 3.18. K+ = tb(X)+ on cl(X) if and only if (X,d) is locally compact and com
plete.

We end this section with a reference to b(X)+, where b(X) is the family of all bounded
subsets ofX. b(X)+ is topological by Proposition 3.5 and it is equal to the upper Attouch
Wets convergence AW+, as described in [5, p. 81]. By Corollary 3.3, AW+ = s(X)+ if and
only if each bounded subset ofX is finite and AW+ = H+ if and only if X is bounded.
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The relationship of the mainS+-convergences on cl(X) is expressed by the followin
diagram:

H+

AW+

K+ tb(X)+

c(X)+

s(X)+

Remark. All results of this section are valid for uniform-spaces.

4. S̃-convergences

We start with a result linking̃S andS+ convergences:

Lemma 4.1. A net (At ) is S+-convergent toA if and only if the net(At ∪ A) is S̃-
convergent toA.

Proof. ⇒ If (At ) is S+-convergent toA, givenS andε > 0, (At ∪ A) ∩ S = (At ∩ S) ∪
(A ∩ S) ⊆ Aε eventually; also it is clear that(At ∪ A) is S−-convergent toA.

⇐ If (At ∪ A) is S̃-convergent toA, (At ∪ A) is S+-convergent toA and(At ∪ A) ∩ S

⊆ Aε eventually, so thatAt ∩ S ⊆ Aε eventually. �
Corollary 4.2. LetS andW be covers ofX. Then

(i) S̃ � W̃ if and only ifS+ �W+;
(ii) S̃ = W̃ if and only ifS+ =W+ and this impliesS− =W−.

Proof. If S̃ � W̃ and At
S+→ A then, by Lemma 4.1,At ∪ A

W̃→ A. Applying again
Lemma 4.1 we getAt → A with respect toW+. The necessary condition follows fro
Corollary 3.3(ii).

(ii) follows from (i). �
Remark. Note that the mappingx �→ {x} is continuous with respect tõS . ThusS̃ is ad-
missible because it is finer thanS− which is admissible.
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Now we come to the question of uniform properties ofS̃ . ForS1, . . . , Sn ∈ S andε > 0
put

S(S1, . . . , Sn; ε) = {
(A,B) ∈ 2X × 2X: A ∩ Si ⊆ Bε, B ∩ Si ⊆ Aε, i = 1, . . . , n

}
.

Then the family{S(S1, . . . , Sn; ε): S1, . . . , Sn ∈ S andε > 0} is a base of the pretopolog
cal uniform structurẽS = S− ∨ S+.

From Theorems 2.11 and 3.4 we infer

Theorem 4.3. The pretopological uniform structurẽS is compatible with the conve
genceS̃ . Consequently,̃S is a pretopology on2X and for eachA ⊆ X the family

BS̃ (A) = {
S(S1, . . . , Sn; ε)(A): S1, . . . , Sn ∈ S andε > 0

}
is a local base ofS̃ at A.

Of course,S̃ = S− ∨ S+ andS̃ is topological if and only if it verifies the condition

(∆) ∀A ⊆ X, ∀U ∈ BS̃(A), ∃V ∈ BS̃(A), ∀B ∈ V, ∃W ∈ BS̃ (B), W ⊆ U.

Combining Propositions 2.15 and 3.5 we obtain

Proposition 4.4. Suppose thatS is a cover andS = Σ(S). ThenS̃ is a uniformity if and
only if

(ε) ∀S ∈ S, ∃ε > 0 andS′ ∈ S such thatSε ⊆ S′.

Remark. It follows from Proposition 4.4 and Corollary 3.8 that if a bornologyS is closed
with respect to the closure operator, thenS+ is topological if and only ifS̃ is a uniformity.

We will now look at the separation properties ofS̃-convergences.
Recall that a pretopological space(Z,π) is T1 if {z} is closed for eachz ∈ Z, T2 or

Hausdorff if every two distinct elements ofZ have disjoint neighbourhoods, and, is T3 or
regular if for eachz ∈ Z andU ∈Nπ (z) there isV ∈Nπ (z) such thatV̄ ⊆ U .

SinceS̃ is a pretopology, it is T1 if and only if
⋂

S̃ is contained in the diagonal o
2X × 2X . Consequently,(2X, S̃) is not T1 in general. Indeed, takeA ⊆ X such thatĀ 
= A.
Then(Ā,A) belongs to every element ofS̃.

Proposition 4.5.

(i) (cl(X), S̃) is T1 if and only ifS is a cover ofX;
(ii) Let S = ↓S. Then(cl(X), S̃) is T2 if and only if the condition(i) in Lemma3.14 is

verified.

Proof. (i) ⇒ Suppose that there isx ∈ X such thatx /∈ S for everyS ∈ S. Then({x},∅)

belongs to every element of element ofS̃. A contradiction.
⇐ An easy proof is omitted.
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(ii) ⇒ Suppose there existsx ∈ X that does not verify the condition; then for everyn

and everyS ∈ S there existsx(n,S) ∈ {x}1/n \ S. It can be checked that the net({x(n,S)})
S̃-converges to both{x} and∅; therefore theS̃-convergence is not Hausdorff.

⇐ Let A and B be closed andA 
= B. We can assume that there isx ∈ A \ B.
Then {x}ε ∩ B = ∅ for someε > 0. Take 0< δ < ε/2 such thatS = {x}δ ∈ S. Put
U = S−(S; δ)(A) andV = S+(S; δ)(B). ThenU ∩ V = ∅. �

It follows from Propositions 4.5(i) and 4.4 that if a bornologyS is closed with respec
to small enlargements thenS̃ is a Hausdorff uniformity on cl(X) × cl(X) and(cl(X), S̃) is
a completely regular topological space.

Proposition 4.6. LetS be a bornology. The following conditions are equivalent:

(i) The empty set has a closed local base forS̃;
(ii) For everyS ∈ S, there existsS′ ∈ S such thatS ⊆ int(S′);
(iii) ∀A ∈ cl(X), ∀S ∈ S, ∀ε > 0, ∃S′ ∈ S, S(S′; ε/2)(A) S̃ ⊆ S+(S; ε)(A).

Proof. (i) implies (ii). Let S be inS; put S+(S)(∅) = {B: B ∩ S = ∅}; then there exists

S′ ∈ S such thatS(S′)(∅) S̃ ⊆ S+(S)(∅); suppose thatS 
⊂ int(S′); then there existsx in S

which does not belong to int(S′) and we can find a sequence(xn) in the complement ofS′
that converges tox. Thus, for everyn, {xn} ∈ S+(S′)(∅), and{x} = S̃-lim{xn} must be in
S+(S)(∅), a contradiction.

Note that condition (i) implies that thẽS-convergence is Hausdorff.
(ii) implies (iii). Let S be in S and considerS′ ∈ S given by (ii); take anyD ∈

S(S′; ε/2)(A) S̃ and let (Dt ) be a net of elements inS(S′; ε/2)(A) which S̃-converges
to D; if x ∈ D ∩ S, there is 0< σ < ε/2 such that{x}σ ⊆ S′ andD ∩ {x}σ ⊆ Dσ

t eventu-
ally; thusd(x, dt) < σ for somet and somedt ∈ Dt . SinceDt ∈ S(S′; ε/2)(A), we obtain
thatdt ∈ Aε/2 and finally thatx ∈ Aε.

(iii) implies (i). Apply (iii) to the empty set. �
Remarks. (a) If noS ∈ S is dense, a weaker form of (iii) withA 
= ∅ implies (i).

(b) If S � S ∩ cl(X), (ii) is equivalent to∀S ∈ S, ∃S′ ∈ S such thatS̄ ⊆ int(S′).

Corollary 4.7. The small enlargement condition forS implies regularity for(cl(X), S̃),
which, in turn, implies condition(ii) above.

We close the paper with a word on hit-and-miss topologies: if∆ is a subfamily of cl(X),
the hit-and-miss topology determined by∆ is the supremum of the lower Vietoris topolog
and of the miss topologyµ∆ (see, for instance, [5,8,9,14,21]). Under mild assumption
the coverS, we have V− � S− andS+ � µS by Propositions 2.1(i) and 3.10(i). Thus t
S̃-convergence, which is more “symmetric” in nature, is not comparable, except for t
Fell topology, to the corresponding hit-and-miss topology.
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