On set convergences and topologies

Part I - Basics

Alois Lechicki Cirquent (BMW Group), Munich, Germany

Copyright © 2008, Alois Lechicki

(University of Milano-Bicocca, Italy, 17th April 2008) page 1

What is a set convergence (topology)?

- Let X be a (nonempty) set. A set convergence (topology) is a convergence (topology) defined on the power set 2^X (or on any subset of 2^X).
- A set convergence Π on 2^x assigns to each net (A_t) (or a filter \mathcal{F}) defined in 2^x a subset Lim^{Π} A_t of 2^x.
- If $A \in \text{Lim}^{\Pi} A_t$ then we write $A_t \xrightarrow{\Pi} A$ (or just $A_t \rightarrow A$).
- The pair $(2^{X}, \Pi)$ is often called *hyperspace*.

What is actually new in this idea?

- Since $(2^{X}, \subseteq)$ is a partially ordered set there is a natural convergence on 2^{X} : the order convergence
 - But if card X > 2, the order convergence on 2^X is the discrete convergence.
 - One could then consider set convergences introduced in an axiomatic way
 - But arbitrary set convergences would not be very useful (and would not mean anything new).
- We are rather interested in set convergences Π defined on the power set 2^x (or a subset of 2^x) of a topological space (X, π) which are somehow linked to the underlying topology π .
- What we are interesting in is e.g. the interplay between π and Π .
- Is for example Π "compatible" with π , i.e. is the mapping $x \to \{x\}$ an embedding? (in this case we call Π *admissible*).
- In contrast to a "usual" topological space elements of a hyperspace (being subsets of the underlying space) can have a much richer structure.

If set convergences are the answer, what are the questions?

EXAMPLE

- Consider an optimization problem of the form (OP) min { $f(x): x \in K$ } where $f:X \to \mathbf{R}$ and $K \subseteq X$.
- Usually we have to deal with the parametric optimization problem (OP_y) min {f(x,y): $x \in K_y$ }, where f:X×Y $\rightarrow \mathbf{R}$ and K_y \subseteq X for y \in Y.
- Stability problem
 - Is the solution function $y \rightarrow v(y) = \min \{f(x,y) : x \in K_v\}$ continuous?
 - Is the solution set mapping y → M(y) = {x ∈ K_y: f(x,y) = v(y)}
 "continuous"?
- But what does it mean that $y \to M(y) \subseteq X$ (i.e. $M: Y \to 2^X$) is *continuous*?

What would be a "good" set convergence?

- Easy to construct?
- Strong or rather weak? Admissible?
- Reflecting (possibly many) properties of the underlying topological space?
- Our "standard tests for goodness" of a set convergence

• EXAMPLE (Test B):

$$B_n = \{(x,y): x \ge 0 \text{ and } y = (1/n)x\} \rightarrow ?$$

From a "good" convergence we would expect that both (A_n) and (B_n) converge to the semiline $\{(x,y) : x \ge 0 \text{ and } y = 0\}$

(University of Milano-Bicocca, Italy, 17th April 2008) page 5

Main questions

- For a given topology π on X how to construct a convergence (topology) on a the power set 2^X (or a subfamily $\subseteq 2^X$)?
- How to construct "good" set convergences?
- Are there many (infinite) constructions leading to meaningful set convergences?
- In other words: how to enter hyperspace (without warp drive)?

Standard constructions (1): hit-convergences

- Usual convergence of nets in a topological space X:
 - $x_t \rightarrow x \text{ if for every open set } U, \, x \in \, U \text{ implies that } x_t \in \, U \text{ eventually.}$
- But $y \in U \Leftrightarrow \{y\} \cap U \neq \emptyset$, thus $x_t \to x$ if and only if for every open set U with $\{x\} \cap U \neq \emptyset$ we have $\{x_t\} \cap U \neq \emptyset$ eventually.
- Following this, we can define for a net (A_t) of subsets of X $A_t \rightarrow A$ if for every open set U,

 $A \cap U \neq \emptyset$ implies that $A_t \cap U \neq \emptyset$ eventually.

This is an example of a so-called *hit-convergence*: if A hits an open set U then A_t hits U eventually.

- This convergence is usually called *lower Vietoris convergence* V⁻.
 - V⁻ is clearly admissible: $x_t \rightarrow x$ iff $\{x_t\} \rightarrow \{x\}$ with respect to V⁻.

Lower Vietoris convergence: basic properties (1)

- The convergence V⁻ is actually a topology: the family {#U: U is open}, where #U = $\{A \subseteq X : A \cap U \neq \emptyset\}$, is a sub-base of a topology on 2^X compatible with V⁻.
- Let $\downarrow B = \{A \subseteq X : A \subseteq B\}$. Then $(\#U)^c = \downarrow(X \setminus U)$ and it means that V⁻ is the weakest set topology in which all sets of the form $\downarrow F$ are closed, where $F \subseteq X$ is closed.
- Is V⁻ a "good" convergence?
 - Sequences (A_n) and (B_n) converge obviously to the semiline $\{(x,y) : x \ge 0 \text{ and } y = 0\}$.

Lower Vietoris convergence: basic properties (2)

- However, V⁻ can be seen as too coarse: if $A_t \rightarrow A$ then $A_t \rightarrow B$ for *any* subset B of A.
- EXAMPLE

- V^- is too coarse for good separation properties: V^- is never T_1 (if card X > 1).
- V^- need not be even T_0
 - Consider **R** with the standard topology and take A = (0,1), B = [0,1]. Then $A \neq B$ but A belongs to every V⁻-neighborhood of B and B belongs to every V⁻-neighborhood of A.

What about other hit-convergences?

- The hit-convergence V^- is generated by the family O of open subsets of X.
- Are there any other "natural" families that lead to "good" hit-convergences?
- Let us for example consider the hit-convergence Π generated by the family of all closed subsets of X (where X is T₁)
 - Notice that if $A_t \to A$ with respect to Π then $A \subseteq \bigcup_t \bigcap_{s \ge t} A_s$ (because singletons {x} are closed.
 - It means that Π is too strong to be interesting (Π does not pass our "goodness" tests A and B).
 - The same is true for any hit-convergence generated by a family containing all singletons.
 - There are only a few know hit-convergences with good properties.

Set convergences: adjusting parameters

- Let (X, π) be a topological space and Π a set convergence on a family $\mathcal{A} \subseteq 2^{X}$ and let us assume that Π is an "extension" of π .
- In depends of course on π (i.e. on the way how it was constructed using π).
- But Π depends also on the choice of the subfamily \mathcal{A} on which it is defined.
- EXAMPLE

The lower Vietoris convergence V⁻ restricted to CL(X) is T₀:

if A and B are closed (nonempty) and A \neq B then e.g. A is not included in B. Thus there is $x \in A \setminus B$ and we can find an open neighborhood U of x that is disjoint with B. Consequently #U = {C $\subseteq X$: C $\cap U \neq \emptyset$ } is a V⁻-neighborhood of A that does not contain B.

Choice of the family \mathcal{A} is a tradeoff: \mathcal{A} should be taken large enough to be interesting for applications and small enough to ensure "good" properties of Π .

```
Common choices for A: CL(X) and C(X)
CL(X) is the family of all closed (nonempty) subsets of X, whereas C(X) is the family
of all compact (nonempty) subsets of X.
```

Standard constructions (2): miss-convergences

- Again, usual convergence of nets in a topological space X: $x_t \rightarrow x$ if for every open set U, $x \in U$ implies that $x_t \in U$ eventually.
- But $y \in U \Leftrightarrow \{y\} \subseteq U$, thus $x_t \to x$ if and only if for every open set U with $\{x\} \subseteq U$ we have $\{x_t\} \subseteq U$ eventually.
- Following this, we can define for a net (A_t) of subsets of X

 $A_t \rightarrow A$ if for every open set $U, A \subseteq U$ implies that $A_t \subseteq U$ eventually.

This convergence is usually called the *upper*

Vietoris convergence V⁺.

Since $A \subseteq U \Leftrightarrow A \cap (X \setminus U) = \emptyset$,

V⁺-convergence is an example of a so-called **miss-convergence**: if A misses a closed set C then A_t misses C eventually.

Upper Vietoris convergence: basic properties (1)

- V⁺ is clearly admissible: $x_t \rightarrow x$ iff $\{x_t\} \rightarrow \{x\}$ with respect to V⁺.
- The convergence V⁺ is actually a topology: the family { \downarrow U: U is open}, where \downarrow U = {A \subseteq X: A \subseteq U}, is a base of a topology on 2[×] compatible with V⁺.
- Is V⁺ a "good" convergence?
 - V⁺ is pretty strong: the sequences (A_n) and (B_n) do *not* converge to the semiline $\{(x,y) : x \ge 0 \text{ and } y = 0\}$ because A_n $\not\subset$ U and B_n $\not\subset$ U for every n

Upper Vietoris convergence: basic properties (2)

- It is clear that V⁺ is the weakest set topology in which all sets of the form $\downarrow U$ are open, where U \subseteq X is open.
- Notice that if $A_t \rightarrow A$ then $A_t \rightarrow B$ for *any* overset B of A (with respect to V⁺).

- Although V⁺ is strong, it is still too coarse for good separation properties: V⁺ is never T_1 (if card X > 1).
- However, if X is T_1 then V⁺ is T_0
 - If A \neq B then e.g. there is $x \in A \setminus B$. Since {x} is closed, the set \downarrow ({x}^c) is a V⁺-neighborhood of B which does not contain A.

Vietoris convergence (1)

- The supremum convergence $V = V^- \vee V^+$ is called the *Vietoris* convergence.
- This convergence (which is a topology) was introduced by Leopold Vietoris (1891– 2002) more than eighty years ago (in 1922) when he was looking for a convenient notion of manifold.
- The Vietoris topology is sometimes called *finite topology* (Michael [1951]).
- Although V is too strong in order to pass our "goodness" tests, it is more "balanced" as compared to its parts V⁻and V⁺.
- The intuitive idea behind the Vietoris topology is that, given an element A of 2^x, a basic V⁺-neighborhood of A consists of sets B that are not much larger than A, and a basic V⁻-neighborhood of A consists of sets C that are not much smaller than A.

Vietoris convergence (2)

The convergences V⁻ and V⁺ are not comparable

- The Vietoris convergence is not designed to distinguish between sets with the same closure.
- So it is usually considered at most on the family CL(X) of all (nonempty) subsets of X.
- For example, if X is regular then (CL(X), V) is Hausdorff.
- For more details on the Vietoris topology see E. Michael [1951].

Always trouble with the empty set

- Every net (A_t) of subsets of X converges to the empty set \emptyset with respect to V⁻.
- On the other hand, \emptyset is an isolated point in (2^X, V⁺) and hence also in (2^X, V).
- Thus usually the smaller family $P_0(X) = 2^X \setminus \{\emptyset\}$ (or some its subfamily) is considered.
- Another reason for it are multifunctions, i.e. set-valued mappings $y \to F(y) \neq \emptyset$.

What is "upper" and what is "lower" ?

- The designation of which convergence is "upper" and which is "lower" is arbitrary.
- This terminology was introduced by E. Michael (1951).
- There is no agreed general definition of "upper" or "lower" convergence.
- For purposes of this lecture we can consider the following definitions
 - A set convergence Π is called *upper* if $A \in \text{Lim}^{\Pi} A_t$ implies that $\uparrow A \subseteq \text{Lim}^{\Pi} A_t$
 - A set convergence Π is called *lower* if $A \in \text{Lim}^{\Pi} A_t$ implies that $\downarrow A \subseteq \text{Lim}^{\Pi} A_t$

Standard constructions (3): Limits of nets of subsets

For a net $(A_t)_{t \in T}$ of subsets of a topological space X we define two limit sets:

• the lower limit

Li $A_t = \{x \in X : \forall U \in N(x) \exists t \in T \forall s \ge t : A_s \cap U \neq \emptyset\}$

and the upper limit

Ls $A_t = \{x \in X : \forall U \in N(x) \ \forall t \in T \ \exists s \ge t : A_s \cap U \neq \emptyset\}$

- Let us consider all nets $(x_t)_{t \in T}$ such that $x_t \in A_t$ for $t \in T$. The intuitive idea behind the above limits is that, the lower limit Li A_t is the set of all limits of the nets $(x_t)_{t \in T}$ whereas Ls A_t is the set of cluster points of such nets.
- Thus Ls $A_t = \bigcap_t \overline{(U_{s \ge t} A_s)}$ and of course, Li $A_t \subseteq$ Ls A_t
- In general the lower limit is strictly smaller than the upper one.

(University of Milano-Bicocca, Italy, 17th April 2008) page 19

Limits of nets of subsets

- For a net $(A_t)_{t \in T}$ of subsets of a topological space X we say that $(A_t)_{t \in T}$ is *K*-convergent to a subset A of X if A \subseteq Li A_t.
- The net $(A_t)_{t \in T}$ is called *K⁺-convergent* to A if Ls $A_t \subseteq A$.
- And, the net $(A_t)_{t \in T}$ is called *K-convergent* to A if Ls $A_t \subseteq A \subseteq Li A_t$, i.e., Ls $A_t = A = Li A_t$
- It is clear that $K = K^- \lor K^+$.
- Of course, if $A_t \rightarrow A$ with respect to K then A is closed.
- The set convergence K is known as *Painlevé-Kuratowski convergence* (and usually called simply: Kuratowski convergence).
- K⁻ is also called the *lower* and K⁺ the *upper Kuratowski convergence* respectively.

Painlevé-Kuratowski convergence (1)

- The K-convergence has often been associated with Kuratowski but really has a much longer history starting with Painlevé (1902)
- It is easy to see that K⁻ = V⁻. Consequently, K⁻ is admissible and passes our "goodness" tests (A) and (B)
- Since for a net (x_t) the upper limit Ls $\{x_t\}$ is equal to the set of all accumulation points of (x_t) , K⁺ is not admissible in general (K⁺ is too coarse to make $\{x\} \rightarrow x$ continuous)
- The convergence K^+ passes our "goodness" tests (A) and (B) because Ls $A_t = Ls B_t = \{(x,y): x \ge 0 \text{ and } y = 0\}$
- In general K⁺ and V⁺ are not comparable. However, if X is regular and A is closed then $A_t \xrightarrow{V^+} A \Rightarrow A_t \xrightarrow{K^+} A$, i.e. V⁺ $\ge K^+$ on CL(X).
- Consequently, $V \ge K$ on CL(X) provided X is regular.

Painlevé-Kuratowski convergence (2)

- It is well known that neither the convergence K⁺ nor K is topological in general
- Clearly, if $A_t \rightarrow A$ and $A_t \rightarrow B$ with respect to K then A = B
- Consequently, K is a Hausdorff convergence
- K is admissible if and only if X is Hausdorff
- For a net $(A_t)_{t \in T}$ let \mathcal{F} be the filter on T generated by the sets of the form $\{s \in T : s \ge t\}$, $t \in T$.
- Let $\#\mathcal{F}$ denote the *grill* of \mathcal{F} , i.e. $\#\mathcal{F} = \{B \subseteq X : B \cap F \neq \emptyset$ for every $F \in \mathcal{F}\}$. Of course, $\mathcal{F} \subseteq \#\mathcal{F}$.
- For two filters G and \mathcal{H} if $G \subseteq \mathcal{H}$ then $\#\mathcal{H} \subseteq \#G$. Moreover, if \mathcal{U} is an ultrafilter then $\mathcal{U} = \#\mathcal{U}$.
- Observe that Li $A_t = \bigcap_{H \in \#\mathcal{F}} (U_{s \in H} A_s)$ and Ls $A_t = \bigcap_{F \in \mathcal{F}} (U_{s \in F} A_s)$.
- Now we can state the following remarkable property of the K convergence: it is always compact!

Another miss-convergence

- Recall that the V⁺-convergence is an example of a so-called *miss-convergence*: if A misses a closed set C then A_t misses C eventually.
- If we replace closed sets with compact sets we get the *upper Fell* convergence F⁺ (called also *co-compact* convergence):

if A misses a compact set K then A_t misses K eventually.

- F⁺ is actually a topology, which is not admissible in general (F⁺ is too coarse to make $\{x\} \rightarrow x$ continuous)
- Of course, F⁺ passes our "goodness" tests (A) and (B)
- The supremum convergence $F = V^- \lor F^+$ is called *Fell convergence* (topology).

Fell convergence

- The convergence $F = V^- \vee F^+$ (elsewhere called the *topology of closed convergence*) was introduced by J. Fell (1962).
- Of course, if X is Hausdorff then $V^+ \ge F^+$ and consequently, $V \ge F$.
- The convergence F being weaker than V has proved to be the superior construct in terms of applications (particularly applications to optimization, convex analysis, mathematical economics, etc.).
- F⁺ turns out to be weaker than K⁺, i.e. $K \ge F$. Consequently, F is also a compact (possibly non-Hausdorff) convergence!
- If X is locally compact (i.e. if every point of X has a neighborhood base consisted of compact sets) then F is Hausdorff, no matter how badly unseparated X may be.
- Since $K \ge F$ and K is a compact Hausdorff pseudotopology (which are minimal Hausdorff convergences), F = K if X is locally compact (the converse is also true).
- F is admissible if and only if X is Hausdorff

The metric case: How to define distance between sets?

- Now let (X, d) be a metric space. Questions:
 - Can we use the metric structure of X to construct a set convergence?
 - Can we define a metric on 2^{X} ?
- How to measure "distance" between sets?
- What about the gap function $(A, B) \rightarrow \delta(A, B) = \inf \{d(a, b) : a \in A \text{ and } b \in B\}$?
- Of course, δ is not a metric but still one could try to define a convergence

 $A_t \to A \text{ iff } \delta(A_t, A) \to 0$

 However, this convergence is too coarse to be interesting.

Example

- What is the distance between Italy and Germany?
- The distance between Munich and Milan is < 400 km</p>
- The distance between nearest points is < 100 km</p>
- But what about a person traveling from Flensburg to Catania?

Standard constructions (4): Upper convergence of Hausdorff

Now consider the usual convergence of nets in a metric space (X,d): x_t → x if for every ε > 0, x_t ∈ B_ε(x) eventually.

- For A \subseteq X let A^{ϵ} be the ϵ -enlargement of the set A of radius ϵ . Then x_t \rightarrow x if for every $\epsilon > 0$, {x_t} $\subseteq B_{\epsilon}(x) = \{x\}^{\epsilon}$ eventually
- Now, for a net (A_t) of subsets of X we can now define $A_t \rightarrow A$ if for every $\varepsilon > 0$, $A_t \subseteq A^{\varepsilon}$ eventually,

This is the so-called *upper Hausdorff* convergence H^+ .

Upper Hausdorff convergence: basic properties

- H⁺ is clearly admissible: $x_t \rightarrow x$ iff $\{x_t\} \rightarrow \{x\}$ with respect to H⁺.
- The convergence H⁺ is actually a topology: the family { \downarrow (A^{ϵ}): ϵ > 0} is a local base of A for a topology on 2[×] compatible with H⁺.
- Is H⁺ a "good" convergence?
 - H^+ is obviously *coarser* than $V^+ : V^+ \ge H^+$. Moreover $H^+ \ge K^+ \ge F^+$.
 - H⁺ passes only our "goodness" test (A). The sequence (B_n), however, does *not* converge to the semiline {(x,y) : x ≥ 0 and y = 0}

Standard constructions (5): Lower convergence of Hausdorff

Since $x_t \in \{x\}^{\epsilon}$ if and only if $\{x\} \subseteq \{x_t\}^{\epsilon}$ we can write $x_t \rightarrow x$ iff for every $\epsilon > 0$, $\{x\} \subseteq \{x_t\}^{\epsilon}$ eventually.

For a net (A_t) of subsets of X we can thus define
A_t → A if for every ε > 0, A ⊆ A_t^ε eventually,
This is the so-called *lower Hausdorff* convergence H[−].

Lower Hausdorff convergence: basic properties

- H⁻ is clearly admissible: $x_t \rightarrow x$ iff $\{x_t\} \rightarrow \{x\}$ with respect to H⁻.
- The convergence H⁻ is actually a topology: the family of all sets {B ⊆ X: A ⊆ B^ε}, ε > 0, is a local base of A for a topology on 2^x compatible with H⁻.
 - Is H⁻ a "good" convergence?
 - H^- is *finer* than V^- : $H^- \ge V^-$
 - H⁻ passes only our "goodness" test (A). The sequence (B_n), however, does not converge to the semiline {(x,y) : x ≥ 0 and y = 0}

Standard constructions (6): Hausdorff distance

- The supremum convergence $H = H^- \lor H^+$ is called *Hausdorff set convergence*
- H is generated by the so-called *Hausdorff distance* (Pompeiu 1905, Hausdorff 1912) $H_d(A,B) = \inf \{\epsilon > 0: A \subseteq B^{\epsilon} \text{ and } B \subseteq A^{\epsilon} \} = \max \{\sup_{a \in A} \delta(a,B), \sup_{b \in B} \delta(b,A) \}.$
- If H_d(A,B) < ε for some ε > 0, we can say that "A *is not much larger than* B" and "B *is not much smaller than* A"
- In general, $V \neq H$ and $H \ge K \ge F$.
- H_d restricted to CL(X) is a metric (but can have infinite values)
- The convergence H (as well as H⁻and H⁺) can be easily formulated in the case of uniform spaces
- The convergence H is not a topological concept: two equivalent metrics on X need not lead to the same convergence.

Another look at the Hausdorff distance

It is well known that

 $H_{d}(A,B) = \sup_{x \in X} |\delta(x,A) - \delta(x,B)|$

Consequently

 $A_t \to A$ with respect to H_d if $\delta(x,\,A_t) \to \delta(x,\,A)$ uniformly on X

Set convergences: Summary

Lower convergences

References

- [1962] J.M.G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13 (1962), 472-476
- [1927] F. Hausdorff, Mengenlehre, Berlin, 1927
- [1933] K. Kuratowski, Topologie I, Warsaw, 1933
- [1951] E. Michael, *Topologies on spaces of subsets*, Trans. Amer. Math. Soc, 71 (1951), 152-182
- [1905] D. Pompeiu, Sur la continuité des fonctions de variables complexes, Ann. Fac. Sci. Univ. Toulouse, 7 (1905), 263-315

Textbooks:

- G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, 1993
- E. Klein, A.C. Thompson, Theory of Correspondences, Wiley, 1984

My lecture next time (in the fall 2008?)

- How to improve the Hausdorff convergence?
- What are consonant and what dissonant spaces?
- What are bornologies good for?
 - ... and much more ...

Questions?

