
1

Submitted to WebLogic Developer’s Journal for publication

Migrating from WebLogic 8.1 to 9.0 - A case study
By Thomas Kruse and Alois Lechicki
August 2006

Abstract
Migrating to new versions of an application container can be challenging, but on the other
hand it allows one to keep pace with product development and improvement.
Moving from WebLogic 8.1 to 9.0 involves some issues, e.g. you have to make your
application compatible with JDK 1.5.
Here are some practical tips to make the migration working based on our experience gained
in a large-scale J2EE project.

Introduction
Migrating to new versions is always risky, but is done for efficiency and new capabilities, and
to stay up to date with a vendor's products and support. Whether you are currently using
WebLogic 8.x or an earlier version, there are many reasons that justify the move to WebLogic
9.x. By moving to WebLogic 9.x, you can take advantage of all its enhancements and new
features (see [4, 5]), which should match your growing business and technical needs.
As WebLogic Server 9.0 was released a few months ago, the IT department of a travel retailer
decided to migrate a large-scale J2EE system running on the WLS8.1 SP3 platform to
WebLogic 9.0. The system in question was a Web-based selling portal for travel agents (see
next section for details). It was decided to carry out the migration during development of a
next release of the system.

BEA published an excellent guide entitled Upgrading WebLogic Application Environments
([2]) and provided an Upgrade Wizard which supports the migration process. While the guide
provides step-by-step instructions on how to migrate your application environment, there are
no tools for automating the process of upgrading configurations and build & deployment
processes.
As a result, IT departments are forced to do the migrations to a large extent manually. The
following sections describe a real-life example of a WebLogic migration and provide some
practical tips on how to make this type of migration work.

Application Overview
The application HolidayTrader we will refer to in this article is a Web-based selling platform
offering travel agents direct access to information and reservation systems of a wide range of
travel providers (see [7] for more details).
The system had already been in production for two years and was used by thousands of travel
agents in Germany. Agents could select from over 100 million package holidays and over 10
million last-minute travel bargains, updated daily. The system enabled users to search for a
desired holiday package, check room and flight availability, then book and track customer
reservations.

The HolidayTrader is ideal for the purpose of our migration walkthrough since it utilized most
areas of J2EE functionality: WebServices, Java Server Pages (JSP), servlets, and EJB
components, as well as messaging via the JMS, and database access with JDBC. Figure 1
depicts an overview of the HolidayTrader architecture.

2

Figure 1: HolidayTrader architecture overview

The following table shows the main characteristics of the HolidayTrader system:

Number of applications 5

Number of session and message-driven beans 25

Number of entity beans 50

Number of Web Services 60

Number of Java classes 7500

The system had to be automatically built and deployed in five environments: development,
stable development, load & performance test, pre-production, and production. The
environments differed in hardware and operating systems.

3

Build & Deployment process overview
Having the above in mind it is not surprising that our build and deployment process was not
simple. In fact, it was a full-time job for one person to maintain this process and adapt it
continually to changing needs and requirements of all involved teams.
In detail, the build and deployment process had to fulfill the following requirements
 It had to be configurable with respect to versions of WLS, JDK, 3rd party libraries and

locations of components, tools, and databases.
 It had to be executable in various environments that differed in hardware platform,

operating system (Windows, Solaris, Linux, etc.) and WLS configuration (e.g. single
instance or clustered).

 And finally, it had to be easy to use for all teams during the whole software life-cycle
from development to production.

The overall goal was to provide a well-defined procedure for setting up the system in any
required environment.
Figure 2 gives an overview of this procedure:

Environment
Settings

Deployment
Settings

configure

Checked-out
sources and

configuration files

Configured build
environment

Fully built neutral
application ready to

deploy

Created and
configured WLS

domain

Deployed
application

Source repository
checkout build create

domain
deploy

Ant build
callback

Ant build
callback

Ant build
callback

JDBC
template

JMS
template

Config
template ...

Ant
build

Configuration
Wizard

(silent mode)

.java .java

.java .java

 Target platform
independent

 Target OS
independent

 Domain type
independent

 Pinned to a build
platform

 Pinned to a build
OS

 Build platform
independent

 Build OS
independent

 Configurations
 Sources
 (3rdparty)

libraries
 Tools

 Pinned to a
target platform

 Pinned to a
target OS

 Pinned to a
Domain type

 Fully deployed
application

 Running in a
cluster / single
instance
configuration

Checked out sources
and configurations

Figure 2: Build and deployment process under WLS 8.1

The build and deployment process supported all stages of setting up the system. The first step
was to check out all files (source code, configurations, tools, etc.) belonging to a given release
from our source control repository. This could be done in any environment we supported. The
only requirement was that WLS 8.1 had to be installed on the machine used for process
execution. The second step was to run a batch file with ant commands that built a “neutral”
(i.e. environment independent) instance of the HolidayTrader. After that a deployment
environment had to be selected from a list of supported environments. These environments
were pre-configured in advance by setting parameters such as URLs, port numbers or WLS
domain properties (single/clustered). Based on the selected configuration a new WLS domain

4

was created using the WebLogic configuration wizard in silent mode (see [1] for details).
Finally the application was deployed into the newly created domain.
During the migration to WLS 9.0 the most effort was spent to upgrade the build &
development process. There were only a few changes required to the application code (see
below).

Migration Steps
Because of complexity of the HolidayTrader system we decided to carry out the migration in
stages. The first step was to upgrade the application environment using the WebLogic
Upgrade Wizard. In the next step we adapted our build & deployment process so far that we
could manually build and run our application under WLS 9.0. In the last step we automated
the build & deployment process and added support for clustered WLS instances.

The migration to WLS 9.0 was done in the development environment first. Then we used
WLS 9.0 while developing a new release of the HolidayTrader. After completing the
development and executing procedures for quality assurance we promoted the upgraded
environment to production.

Step 1 – upgrade existing WLS 8.1 domain using Upgrade Wizard
In this step we upgraded the existing WLS 8.1 domain using the WebLogic Upgrade Wizard
that is part of the WLS 9.0 delivery. This was done in our development environment
containing one (non-clustered) domain.

A domain is the basic administration unit for WebLogic Server instances. It consists of one or
more WebLogic Server instances that can be managed with a single administration server.

We completed the following tasks

 We checked out a stable revision of the application from our source control system and
ran the build & deployment procedure in the WLS 8.1 environment.

 We installed WLS 9.0 in parallel to WLS 8.1.

 Then we copied our WLS 8.1 domain to the WLS 9.0 “domains” directory.

 Finally, we upgraded the environment using the WebLogic Upgrade Wizard following
instructions as described in [2].

Issues & Solutions

Although the Upgrade Wizard did not report any error, we could not start up the WebLogic
server in the upgraded environment. In fact, some manual adaptations were still required

 The xom library (xom-1.0.jar) had to be upgraded because of differences between JDK
1.4.x and 1.5.x.

 A script file for setting environment variables and paths had to be adapted manually.

 The “pointbase” section in the migrated “startWeblogic.cmd” file had to be removed
because of conflicts with a Hypersonic database we used. We replaced this section with
commands for setting up our own environment variables and paths.

 All occurrences of the former “./applications” path in the migrated “/config/config.xml”
file had to be replaced with the new “./autodeploy ” path. This replacement had to be done
in all configuration files of the deployed applications.

5

As soon as all the above changes were done we could start up our system and run it under
WLS 9.0. We conducted nearly all jUnit tests to make sure that everything worked fine.
However the upgraded environment was still not ready to be used for development.

Step 2 – build and deploy the application under WLS 9.0
The next step was to get our build & deployment process rough-and-ready under WLS 9.0.
The goal was to identify and resolve issues in the process as a preparation for final upgrade in
Step 3.

 We began with redefining the environmental variables WL_HOME and JAVA_HOME
and other references to WLS 9.0 and JDK 1.5 installations paths in various property files
used by the build process.

 After that we executed the build process trying to resolve one problem after another.
Most of these issues were related to the new JDK or caused by missing libraries (see
below). Because of complexity of our build process this was a rather time consuming
procedure.

 Finally, we managed to build, deploy and start up our system in the upgraded
environment.

However, the build & deployment process ran in the development environment only and was
not completely automated yet.

Issues & Solutions

 As mentioned before, our build & deployment process was designed to be executed in any
environment we supported, even if there was no pre-created WLS domain. In this case a
domain was automatically created using a scripting interface of the WebLogic
configuration wizard. This interface was deprecated in WLS 9.0. Consequently, we
created domains manually and postponed solving this problem to Step 3 (final migration).

 Our jar-signing procedure used “sunrsasign.jar” library that was no longer shipped with
JDK 1.5. Thus we copied this jar-file from the previous installation to the folder
<BEA_HOME>\jdk150_03\jre\lib.

 Because we used the XML-Bean API we had to add the path to “xbean.jar” to
CLASSPATH.

 Our build process did not require any WLS installation on the machine it was executed on
(WLS installation was necessary for executing the deployment process only). Of course,
we had to provide some WLS libraries in order to resolve include directives in the source
code. In the WLS 8.1 environment we needed the following jars

 weblogic.jar
 webserviceclient+ssl.jar
 webservices.jar
It turned out that under WLS 9.0 a few additional files were required

 weblogic.policy
 xbean.jar
 persistence/persistence.install
 schema/weblogic-container-binding.jar

6

Step 3 – Final migration
In this step we focused on the following tasks

 Automating configurations and build & deployment processes in all environments.

 Resolving issues related to JDK 1.5.

Automating configurations and build & deployment processes

Since our environments differed in hardware and operating systems we had to use
environment dependent configurations. We provided a specific set of configuration
parameters for each environment so that in a given environment the whole build &
deployment could be run automatically without any manual adaptations.
However, as mentioned above, we discovered the problem with automatic domain generation.
Our scripts had to be changed because the configuration wizard interface in silent mode was
deprecated in WLS 9.0. Under WLS 8.1 we used this interface to create a new domain and
then to add the JMS and JDBC configurations.
A solution was to use the new WebLogic Scripting Tool (WLST) instead of the configuration
wizard interface (see [3] for details).
Another problem was caused by the fact that the structure of the config.xml file changed in
WLS 9.0. Under WLS 8.1 we used environment specific templates for generating config.xml
files. Consequently, we had to adapt these templates and we decided to rework the whole
generation process completely. It was a good opportunity to use WLST consistently for all
management tasks.
Figure 3 summarizes the above considerations.

Environment
Settings

Deployment
Settings

configure

Checked-out
sources and

configuration files

Configured build
environment

Fully built neutral
application ready to

deploy

Created and
configured WLS

domain

Deployed
applicationSource repository

checkout build create
domain

deploy

Ant build
callback

Ant build
callback

Ant build
callback

JDBC
template

JMS
template

Config
template

...

Ant
build

WLST
configuration
commands

.java .java

.java .java

 Target platform
independent

 Target OS
independent

 Domain type
independent

 Pinned to a build
platform

 Pinned to a build
OS

 Build platform
independent

 Build OS
independent

 Configurations
 Sources
 (3rdparty)

libraries
 Tools

 Pinned to a
target platform

 Pinned to a
target OS

 Pinned to a
Domain type

 Fully deployed
application

 Running in a
cluster / single
instance
configuration

Checked out sources and
configurations

Adapted during migration
process

Figure 3: Changes to the build & deployment process

7

Resolving issues related to JDK 1.5

As soon as the above migration steps were completed, we could run extensive tests. Load &
performance tests revealed however that under certain circumstances the SOAP exception
handling did not work properly. We examined the problem and found that in JDK 1.5 the
buffer length for SoapFaultExceptions was limited to ca. 4000 Bytes. As a result, we had to
rework the handling of SoapFaultExceptions to solve the problem.
The last issue was due to special requirements concerning our roll-out process. Client
components had to support both JDK 1.4.2 and JDK 1.5. This requirement resulted in a
complex build process because some components had to be compiled twice using different
JDKs.

Total Migration Effort
The total effort required for the migration of the HolidayTrader as described above was less
than 3 person-months. The most time-consuming part was Step 3 (approx. 75% of the whole
effort).

Next Steps
After migrating the HolidayTrader as-it-was (i.e. making only the really necessary changes)
we considered a redesign of the system in order to take advantage of some new features of
WLS 9.0. Migration is a good opportunity to carry out such a redesign.
In our case we decided to replace a proprietary timer service by the standard EJB Timer
Service (see e.g. [6] for details).
Prior to EJB 2.1, there was no standard way of implementing timer services for scheduling
tasks running within the EJB container. As a workaround we implemented a job scheduling
using JMS API.
Fortunately WLS 9.0 added support for EJB Timer Service in compliance with EJB 2.1. This
service enables one to schedule a notification at a particular time, at the end of an elapsed
period of time, or at recurring intervals.
We discovered however an issue with the Timer Service in WLS 9.0. A WebLogic server
instance did not start up properly in development mode when it contained an active timer
service. A workaround was to configure all servers in a domain to run in production mode.

Summary
This article provides a number of best practices for moving your applications to WebLogic
Server 9.0. It describes some crucial tasks that architects and developers should be aware of
while migrating to WLS 9.0.
During the migration process you need to move not only the application to the target
environment, but also third-party software, configurations and the build & deployment
process.

References

[1] Streamline Configuration of WebLogic 8.1 Projects:
http://www.ftponline.com/weblogicpro/2004_07/magazine/features/ogourment/default_
pf.aspx

[2] Upgrading WebLogic Application Environments:
http://e-docs.bea.com/common/docs90/upgrade/index.html

8

[3] Creating and Configuring WebLogic Domains Using WLST Offline:
http://e-docs.bea.com/wls/docs90/config_scripting/domains.html

[4] New Features and Enhancements J2SE 5.0
http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html

[5] What’s New in WebLogic Server 9.0:
http://e-docs.bea.com/wls/docs90/notes/new.html

[6] Generic Timer using EJB Command pattern:
http://www.theserverside.com/patterns/thread.tss?thread_id=30093

[7] http://wldj.sys-con.com/read/45563.htm

About the authors:
Thomas Kruse has been working in the IT industry for 16 years. He has experience with
J2EE technology since five years and has completed two large scale J2EE applications during
this time. His professional background ranges from developer over system designer to system
architect.
URL: www.kruse-it.de
e-mail: thomas.kruse@kruse-it.de

Alois Lechicki, PhD, is a principal consultant for Softlab, Munich (Germany). He has
extensive experience in software engineering and technical architecture. He consults as an
architect and guides development teams building solutions that help improve business partner
integration, application integration, and process automation.
URL: www.softlab.de
e-mail: alois.lechicki@softlab.de

 Thomas Kruse and Alois Lechicki

