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If the Yang-Mills theory is the answer, 
what is the question? 
Yang-Mills theory as understood by a layman 

 

Summary 

Yang-Mills theories play a central role in modern physics, forming the basis for the Standard 
Model (SM) of elementary particles and forces. The SM has proven to be an exceptionally 
successful theory, representing our most sophisticated theoretical framework for understanding 
the properties of matter and interactions at the fundamental level. In technical terms, 
interactions in the Standard Model are described by a Yang-Mills theory with the local 
      ×      ×      gauge symmetry. The objective of this article is to explain to non-
physicists, who wish to learn something about contemporary physics, what this statement 
means. As the author is not a physicist, this text is intended as an introduction to Yang-Mills 
theory for a non-expert audience. However, given the sophistication of Yang-Mills theory, the 
paper assumes a fair bit of mathematical background. It includes some technical details, 
although these are largely presented in a superficial manner. 
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“... I think I can safely say that nobody understands quantum mechanics. So do not take the 
lecture too seriously, feeling that you really have to understand in terms of some model what I am 
going to describe, but just relax and enjoy it. I am going to tell you what nature behaves like. If you will 
simply admit that maybe she does behave like this, you will find her a delightful, entrancing thing. Do 
not keep saying to yourself, if you can possibly avoid it, "But how can it be like that?" because you will 
get 'down the drain', into a blind alley from which nobody has escaped. Nobody knows how it can be 
like that.” ([F9])  – Richard P. Feynman (1) 

1. Introduction 

When reading popular science books or articles on modern physics, one often encounters the 
notion of Yang-Mills theory, which in turn has something to do with gauge theory. The Yang-
Mills theory (YM) is actually a class of theories based on gauge symmetry. Yang-Mills theory 
appears to occupy a foundational position in quantum physics, providing the basis for the 
Standard Model (SM) of particle physics. 

Prior to the formulation of gauge symmetry and Yang-Mills theory, numerous scholars, 
including Lorentz, Einstein, and Poincaré, had engaged in the study of symmetries within 
Maxwell's equations. They discovered a symmetry, the Lorentz symmetry, which is fundamental 
to the theory of special relativity (SR). This prompted other scientists to investigate whether 
there were additional symmetries inherent to Maxwell's equations. Hermann Weyl [W6] 
identified a novel symmetry of electromagnetism, now known as gauge symmetry ([N2]). 

A little earlier, Einstein developed his general theory of relativity (GR). One of the key ideas 
of general relativity is the symmetry principle that the field equations should be invariant with 
respect to the choice of the (local) coordinate system. This is known as the principle of general 
covariance. From a modern perspective, this can be considered an example of gauge symmetry 
([N2]). 

In 1954, a seminal contribution to theoretical physics was made by Chen-Ning Yang and 
Robert L. Mills, who developed what is now known as Yang–Mills gauge theory through a 
creative generalisation of Maxwell's theory. However, for a period of almost twenty years, it 
remained in a state of dormancy as a beautiful but useless mathematical exercise. This situation 
changed in the 1970s, when, following significant advancements in both experimental and 
theoretical particle physics, it was called upon to unify the electromagnetic and weak 
interactions. Since that time, one of the most important guiding principles in physics has been 
that our description of the world should be based on a special type of classical field theory, 
namely Yang-Mills theory. With the exception of gravitation, all important theories of 
contemporary physics are quantum field theories (QFT) which in turn are quantised versions of 
Yang-Mills theories. Consequently, Yang-Mills theory now serves as the foundational framework 
for the Standard Model of elementary particles. ([H13], [N2]) 

Descriptions of Yang-Mills theories in the literature can be classified into two categories: 
those that are superficial and qualitative, and those that are mathematically precise, highly 
technical, and abstract. 

 An example of the first category is: 

Yang-Mills theory is basically a generalization of the principles that we use to understand the 
electromagnetic force. Because these principles were so successful with electromagnetism, it 
seemed natural to try to apply them to the other forces - the weak and strong nuclear forces. The 
Yang-Mills theory is, specifically, what is known as a gauge theory  … . In this theory space-time 

                                                             

1 Richard Phillips Feynman (1918 –1988) was an American theoretical physicist. He received the Nobel Prize in 
Physics in  965 jointly with Julian  chwinger and  hin'ichirō Tomonaga. 
Julian Seymour Schwinger (1918 – 1994) was an American theoretical physicist. 
 hin'ichirō Tomonaga   906 – 1979), usually cited as Sin-Itiro Tomonaga in English, was a Japanese physicist. 
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fields have an internal symmetry: they are acted on by space-time dependant transformations in 
a way that leaves physical quantities, such as the action, invariant. These transformations are 
known as local gauge transformations. (2) 

While this reads quite well, it is not immediately clear what it actually means. 

 An example for the second category is: 

Yang-Mills theory is a gauge theory on a given 4-dimensional (pseudo-)Riemannian manifold  X 
whose field is the Yang-Mills field – a cocycle H(X, BU(n)) in differential nonabelian 
cohomology represented by a vector bundle with connection – and whose action functional is 

                                                   
 

       
 

 
                    

 

 
 

for 

        -   the field strength, locally the curvature u(n)-Lie algebra valued differential form on X 
- ⋆ the Hodge star operator of the metric g 

- 1/g2 the Yang-Mills coupling constant and  the theta angle, some real number. (3) 

Even if one is able to understand all of these mathematical terms, it is still not clear what the 
physical meaning of the whole thing is. What is the relationship between these concepts and the 
real world?  

And you cannot expect too much help from Wikipedia either: 

Yang-Mills theories are special examples of gauge theories with a non-abelian symmetry group 
given by the Lagrangian 

                                                            =   

 
 Tr(  ) =  

 

 
        

  

with the generators    of the Lie algebra, indexed by a, corresponding to the F-quantities (the 
curvature or field-strength form) satisfying 

                                           Tr(    ) = 
 

 
   , [     ] =        . (4) 

But again, it does not mean much unless one already knew the answer anyway. 

In this paper, I will try to fill the gap between general, qualitative on the one hand and 
mathematically abstract on the other hand expositions of the Yang-Mills theory. Unfortunately, 
the Yang-Mills theory is a complex mathematical theory. So just to get a superficial 
understanding of the theory it is essential to grasp its mathematical formalism, at least to a 
certain extent (5). The language of physics is mathematics, and this fact cannot be escaped, even 
in a 'layman exposition' such as this article. That does not mean, however, that the reader needs 
to comprehend all the equations. It is possible to understand the essence of the discussion 
without having a detailed knowledge of the equations. 

                                                             

2 https://www.reddit.com/r/askscience/comments/2u6jgu/can_you_simplify_and_explain_whats_behind  

3 https://ncatlab.org/nlab/show/Yang-Mills+theory  

4 If you wonder why this description is apparently quite different from the previous one, remember what Feynman 
said: “every good physicists know five different mathematics to describe the same phenomenon.” 

5 It is important to remember that quantum physics is fundamentally non-intuitive. So it is one of those cases where 
mathematics is essential. At the same time, mathematics is the main problem in understanding advanced physics. The 
precise description of physical phenomena requires a mathematical arsenal that is not available to everyone. 

However, physics is not mathematics. Besides being mathematically consistent a successful physical theory must also 
be consistent with known data, which is a stringent demand. “It doesn't matter how beautiful your theory is, it doesn't 
matter how smart you are. If it doesn't agree with experiment, it's wrong.” -- Richard P. Feynman. 
Another thing is the physical intuition that is required to understand how the Universe works. 

 

https://www.reddit.com/r/askscience/comments/2u6jgu/can_you_simplify_and_explain_whats_behind
https://ncatlab.org/nlab/show/Yang-Mills+theory
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My description of the Yang-Mills theory is from a mathematical viewpoint largely cursory 
and does not delve deeply into the intricacies of the theory. However, from time to time it will be 
necessary to go into the ‘engine room’ of the theory. Although one can see a lot of very 
interesting things there, we will not spend an extensive amount of time in this area. 

It should be noted that the explanations within this text do not claim to be mathematically 
precise. The presentation of facts has been simplified to a considerable degree, and the accuracy 
of the information provided may be limited due to the author's lack of expertise in the subject 
matter. 

The material in this paper is not original; some comes from primary literature, but the 
majority of what I write is taken from the existing textbooks. The textbooks [A1], [F2F6], 
[S2S3] and [S16] were especially influential. 

Finally, it is important to note that any copyright issues or inaccurate attribution are 
unintentional. Should any such concerns arise, or if there are comments to be shared, they can 
be directed to the email address provided on the first page of this article. 

2. Prelude on the Standard Model (SM) 

The question of the fundamental nature of reality has been a topic of interest for humans for a 
considerable length of time. What are the fundamental constituents of the universe? And what 
are the underlying principles that bind them together?  Why is it that so many things in this 
world exhibit similar characteristics? It has been established that the matter of the world is 
constituted by a small number of fundamental building blocks of nature. The universe exists as a 
consequence of the interactions between these fundamental particles. These interactions 
encompass attractive and repulsive forces, decay, and annihilation. All forces in the universe can 
be attributed to four fundamental interactions between particles. ([C6]) 

In the 1970s physicists developed a theory of fundamental particles (also called elementary 
particles) and their interactions (except gravity) called The Standard Model (SM). In a nutshell, 
the picture is as follows. The fundamental matter units are fermions which are structureless at 
the smallest distances currently probed by the highest-energy accelerators. Fermions interact 
via the exchange of gauge field quanta. All the non-gravitational interactions we know of are 
described by Yang-Mills gauge theories. Consequently, these Yang-Mills theories provide an 
answer to the question What holds the world together?  The main goal of this paper is to discuss 
the particular nature of these Yang-Mills theories. Gauge theories, however, have a very rich 
mathematical structure, at the classical and especially at the quantum level. Within the scope of 
this article, we can only limit ourselves to just a few elementary aspects.  

In this chapter, we look briefly at the Standard Model (see [A1] and [W0] as a general 
reference for this chapter).  

The Standard Model   M  is a theory   or rather a set of theories   that encapsulates and 
explains all the experimental studies of the microworld that have ever been made. It is the most 
complete explanation of the fundamental particles and interactions to date. All the phenomena 
of Maxwell's electromagnetism, all the studies of radioactivity, all the data produced in particle 
accelerator laboratories   all of this can be explained by the  tandard Model  6). It contains just 
two basic components. 

First, there are some fundamental particles   the quanta of the fundamental fields. There are 
two types of fundamental fields: fermions and bosons (7). Bosons are split into two groups: 
gauge (or force-carrying) bosons and Higgs boson. In a sense, the fermions are particles of 

                                                             

6 Recently, however, experiments have hinted at effects that may lie beyond the Standard Model   see Remark 2.4. 

7 This nomenclature was coined by Paul A. Dirac, who named it in honour of two renowned scientists: Enrico Fermi 
(1901 – 1954) and Satyendranath Bose (1894 - 1974). 



6 

 

matter while the gauge bosons are particles of interactions. The difference between the Higgs 
boson and the gauge bosons is that the latter are associated with gauge symmetries, while the 
Higgs is not. The Higgs field provides a mechanism for charged fermions and weak gauge bosons 
to acquire nonzero masses (see Section 7.4). In this regard, the Higgs field is not considered to 
form a fundamental force. 

                                           

The fermions, with spin-½   (in units of    see Section 3.7), are of two types: three generations 
(families) of lepton doublets (the electron e and its neutrino   , the muon  and its neutrino   , 

and the tau  and its neutrino   ) (8) and three generations (families) of quark doublets 

I.     the up (u) and down (d) quarks,  

II.   the charm (c) and strange (s) quarks, and 

III. the top (t) and bottom (b) quarks.  

Each quark comes in three varieties, distinguished by colour. It is precisely this quantum 
number that underlies the dynamics of the strong interactions. Colour, in fact, is a kind of 
generalized charge, for the strong interactions (9). One denotes the three colours of a quark by 
‘red’  ‘blue’  and ‘green’. Thus we have the triplet  u, u, u), and similarly for all the other quarks 
(see Section 7.5). 

                        

Each fermion has an antiparticle (denoted, e.g. u , d , etc.). Moreover, each fermion except 
neutrinos exists in a left-chiral state as well as in a right-chiral state, which corresponds to a 
different behaviour related to the weak interaction (see Section 5.7). 

All stable matter in the universe is made from particles that belong to the first generation; 
any heavier particles quickly decay to the next most stable level. 

                                                             

8 The historical nomenclature of leptons was derived from their perceived lightness; however, this is no longer true 
with the discovery of the tau, which is about twice as heavy as the proton ([H14]). 

9 For the nuclear forces physicists use the term ‘interaction s ’ both in the singular and in the plural, whereas for 
gravitation and electromagnetism only the singular is common. This may have to do with the fact that in the Standard 
Model there are several quanta for the strong and weak nuclear, while there is only one photon and (probably) only 
one graviton. ([E1]) 
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The gauge bosons, all of which possess spin 1, are the massless photon (), the three massive 
weak bosons (  ,   , and   ), and the eight massless gluons (g). Gluons are electrically 
neutral, but they are not colour neutral. Each gluon carries one colour and an anticolour (see 
Section 7.5). The massive Higgs boson ( ) corresponds to a scalar field so it has spin 0 (see 
Section 7.4). It is electrically neutral. The bosons serve as their own antiparticles.  

                                

From these few (eighteen, if we ignore colour of quarks and gluons (10)) basic building blocks, all 
the familiar matter in the Universe can be constructed (11). 

Second, these fundamental particles interact in only three ways (12):  

 via the electromagnetic interaction which, as we shall see later (Section 7.4), is an aspect 
of the unified electroweak interaction. Electromagnetism acts on any particle that carries 
electric charge   the carrier particle is photon.  

 via the weak interaction, another aspect of the unified electroweak interaction. The weak 
interaction acts on all particles (it is the only interaction felt by the neutrinos) but its 
effects are often masked by the other interactions; the carrier particles here are the   , 
   and    bosons.  

 via the strong interaction. The strong interaction acts on any particle that carries colour 
charge. In other words, it acts only on the quarks and gluons. Quarks and gluons do not 
appear as free particles. They form a large number of bound states, the hadrons. It is the 
strong force that binds quarks into protons, neutrons, mesons and the like. The carrier 
particle in this case is the gluon (see Section 7.5).  

Each of the carrier particles couples to the charges (13  with a characteristic ‘stickiness’ known 
as the coupling constant (14) for the interaction. The coupling constants are different, so the 
strengths of the three interactions are different.  

The hadrons are of two types: hadrons with spins 
 

 
, 
 

 
, 
 

 
, ... (i.e. fermions) are baryons, those 

with spins 0, 1, 2, . . . (i.e. bosons) are mesons. Examples of baryons are nucleons   the neutron n 
and the proton p. Baryons contain three quarks, while mesons are quark-antiquark systems. One 

                                                             

10 Of course, there are still antiparticles to be taken into account. 

11 It turns out that roughly 68% of the universe is dark energy. Dark matter  makes up about 27%. The rest  
everything on Earth, everything ever observed with all of our instruments, all normal matter  adds up to less than 
5% of the universe. Neither dark matter nor dark energy is included in the Standard Model. 

12 Gravitational interaction is not part of the SM. 

13 To every force, there is a corresponding charge. For the electromagnetic force, that charge is the well-known 
electric charge. The charge for the strong force is the colour charge, e.g. quarks have this charge. The case of the weak 
force is more complicated. The problem with ‘weak charges’ is that electroweak symmetry is spontaneously broken  
see Section 7.4. The corresponding charge for gravitation is the energy-content of a system. 

14 Coupling constants are not, in fact, constant. The actual value of a coupling constant changes if one changes the 
reference point, i.e. the energy scale. Nevertheless, the names coupling constant, fine-structure constant, etc. are still 
being used. 
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immediate consequence is that quarks have fractional electromagnetic charge. For example, the 

proton has two u quarks of charge  
 

 
  and one d quark of charge  

 

 
. The neutron has the 

combination  ddu   while the meson π+ has one u and one anti-d, i.e. (ud ), and so on. 

Unlike the constituents of atoms and nuclei, quarks have not been observed as stable 
isolated particles. When hadrons of the highest energies currently available are smashed into 
each other, what is observed downstream is only lots more hadrons, not fractionally charged 
quarks. The explanation for this novel behaviour of quarks is now believed to lie in the nature of 
the strong force  see Section 7.5.  

Another property of hadrons is that they have no net colour charge (i.e. they are colour-
neutral) even though the quarks themselves carry colour charge. So what holds the nucleus 
together when positive protons repel each other with electromagnetic force, and protons and 
neutrons are colour-neutral? The answer is, in short, that the strong force between the quarks in 
one proton and the quarks in another proton is strong enough to overwhelm the repulsive 
electromagnetic force. This is called the residual strong interaction  and it is what ‘glues’ the 
nucleus together. 

The behaviour of the fundamental interactions is described completely by relativistic 
quantum field theories of the Yang-Mills type. Quantum field theory – or QFT for short – is the 
fundamental formal and conceptual framework of the Standard Model. The weak and 
electromagnetic interactions of both quarks and leptons are described in a (partially) unified 
way by the electroweak theory of Glashow, Salam and Weinberg (GSW), which is a 
generalization of quantum electrodynamics (QED). The strong interactions of quarks are 
described by quantum chromodynamics (QCD), which is also analogous to QED. The similarity 
with QED lies in the fact that all three interactions are types of gauge theories, though realized in 
different ways. 

Thus, at a deep level, there are only two interactions that are relevant for fundamental 
particles: the electroweak and strong interactions.  

A summary of fundamental particles as described by the Standard Model (we ignore colour 
of quarks and gluons) is given below (from Wikimedia Commons): 
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A summary of interactions is given in the table below (the gravitational force is added for 
completeness but is not part of the Standard Model). 

 

Remark 2.1. The notion of spin requires some comment: fundamental particles have an 
intrinsic spin angular momentum (15). The adjective intrinsic means that they do not have spin 
because someone is spinning them. They just spin – or rather, they just have a measurable 
quantity with the same units as angular momentum. Spin is an internal degree of freedom of a 
particle. In current physics, fundamental particles are featureless – like a mathematical point. In 
order for something to be perceived as spinning, the thing spinning would need something like a 
‘front’ and a ‘back’. Featureless  point particles do not have anything like that.  pin is a 
convenient label for a measurable quantity and not a description of reality (16) ([P6]). Every 
fundamental particle has associated with it a spin quantum number    (often called the spin 
number or just the spin), where   is any whole number multiple of a half (in units of  ). 

Fermions have half integral spin (
 

 
, 

 

 
, 

 

 
, etc.) and bosons have integral spin numbers (0, 1, 2, 

etc.). No spin numbers are possible in between these. Spin is a quantised quantity.  

An important fact about spin is that it cannot be changed. The spin of a particle is a 
fundamental unchangeable property of it just like its mass or electric charge. Particles made 
from combinations of fundamental ones will have an overall spin that is a combination of the 
individual spins. 

The fundamental fermions have a spin of ½. Fermions include (in addition to leptons and 
baryons) nuclei of odd mass number (e.g., tritium, helium-3, uranium-233, etc.). For reasons we 
do not fully understand, a consequence of the odd half-integer spin is that fermions obey the 
Pauli Exclusion Principle, which forbids more than one particle of this type from occupying a 
single quantum state (see Section 5.8). Therefore, fermions cannot co-exist in the same state at 
the same location at the same time. The basic rule is 'don't sit where I'm sitting'. This rule 
underlies, for example, the build-up of electrons within an atom in successive orbitals around 
the nucleus and thereby prevents matter from collapsing to an extremely dense state. 
Consequently, the exclusion principle allows fermions to build everything from atoms to planets. 

The force carrying bosons (gluons, photons, and the    and    bosons) have spin 1 since 
they go with vector fields. The Higgs boson corresponds to a scalar field so it has spin 0. If the 
particle of the gravitational field is ever discovered, it would be called a graviton and would have 
spin 2 since it corresponds to a tensor field ([F8]). In addition to these force carrying particles, 
bosons include mesons (e.g., pions and kaons) and nuclei of even mass number (e.g., helium-4). 
Bosons differ significantly from fermions in that there is no limit to the number that can occupy 
the same quantum state (they obey the Bose-Einstein statistics, whereas fermions obey the 
Fermi-Dirac statistics). This behaviour gives rise, for example, to the remarkable properties of 
helium-4 when it is cooled to become a superfluid. 

                                                             

15  Angular momentum is the rotational equivalent of linear momentum. It is an important quantity in physics because 
it is a conserved quantity – the total angular momentum of a closed system remains constant. In three dimensions, the 
angular momentum for a particle is the cross product  ×  of the particle's position vector   (relative to some origin) 
and its momentum vector   ([W11]). 
16 It may be tempting to think about fundamental particles as little spinning balls, but such a picture quickly leads to 
paradoxical results. One of the surprises of modern science is that atoms and sub-atomic particles do not behave like 
anything we see in the everyday world. Matter is not composed of particles in the classical sense, nor is it an ordinary 
wave. These terms are used metaphorically and should not be interpreted literally. 
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The spin of a particle determines which mathematical tool we need to describe its field: we 
describe spin-0 particles using scalars, spin-½ particles using spinors (17) and spin-1 particles 
using vectors. 

Remark 2.2.  Each of leptons comes in three generations, distinguished by a quantum 
number called lepton flavour. Thus we have electron flavour   , muon flavour    and tau flavour 

  . Each is postulated to be conserved in all leptonic processes. The electromagnetic interactions 
of the  and the  leptons are the same as for the electron e. In weak interactions, each lepton (e, 
μ  τ  is accompanied by its ‘own’ neutral partner  a neutrino. In the Standard Model, the three 
neutrinos are assigned lepton flavour quantum numbers in such a way as to conserve each 
lepton flavour separately. 

Similarly like the leptons, also quarks (u, d, s, c, b, t) carry flavour quantum numbers called 
quark flavour. Thus quarks have both ‘colour’ and ‘flavour’  18). The strong and electromagnetic 
interactions of quarks are independent of quark flavour and depend only on the electromagnetic 
charge and the strong charge (i.e. colour), respectively. This means, in particular, that flavour 
cannot change in a strong interaction among hadrons – that is, flavour is conserved in such 
interactions. In weak interactions, by contrast, quark flavour is generally not conserved. 

Remark 2.3.  The Standard Model of fundamental particles is actually a misnomer ([H7], 
[T5]). This is because it is, in fact, the Standard Model of quantum field physics. The fundamental 
objects of the Standard Model are all fields (19). Take for example the quantum electrodynamics 
(QED): this theory has two fundamental objects, the electromagnetic field    and the electron-

positron (Dirac) field  (see Section 5.8). In general, the fundamental entity in Quantum Field 
Theory (QFT) is not the particle, but rather the field. The field is the property of spacetime that 
in the presence of energy and momentum a particle can be created. Particles are the quantised 
excitations of the underlying fields (the field quanta). It means that we associate these 
excitations with what we perceive as particles (20). So remember, any time we are talking about 
particles, we are in fact talking about the idealised excitation of the field that goes with that 
particle. Interactions between fields create or destroy such excitations. So for instance, a photon 
may be created when the field of electrons interacts with the electromagnetic field.  

The different particle types are truly separated in QFT: each type is represented by one field, 
and the fields interact. These interactions are quantified by the Lagrangian density, which 

                                                             

17 Spinors are discussed in Section 5.7. 
18 The term ‘flavour’ was coined in  97  by Murray Gell-Mann and his student Harald Fritzsch at a Baskin-Robbins 
ice-cream store in Pasadena, for describing the different types of quarks. Just as ice cream has both colour and flavour 
so do quarks ([K5]). 
Fritzsch had been born in Zwickau, south of Leipzig in East Germany. Together with a colleague he had defected from 
Communist East Germany, escaping from the authorities in Bulgaria in a kayak fitted with an outboard motor. They 
had travelled 200 miles down the Black Sea to Turkey ([B1]). 
19 For a detailed discussion of this issue, please refer to [H7]. 
20  The idea of a particle as an excitation of a quantum field is not particularly intuitive (not to mention even more 
abstract definition: a particle is an irreducible representation of a symmetry group). R. Feynman recollects ([F11]): 
“I went to MIT. I went to Princeton. I came home  and he [father] said  ‘Now you've got a science education. I have 
always wanted to know something that I have never understood, and so, my son, I want you to explain it to me.’  
I said yes.  
He said, ‘I understand that they say that light is emitted from an atom when it goes from one state to another, from an 
excited state to a state of lower energy.’ 
I said  ‘That's right.’ 
‘And light is a kind of particle, a photon, I think they call it.’ 
‘Yes.’ 
‘So if the photon comes out of the atom when it goes from the excited to the lower state, the photon must have been in 
the atom in the excited state.’ 
I said  ‘Well, no.’ 
He said  ‘Well, how do you look at it so you can think of a particle photon coming out without it having been in there in 
the excited state ?’ 
I thought a few minutes  and I said  ‘I'm sorry; I don't know. I can't explain it to you.’ 
He was very disappointed after all these years and years of trying to teach me something, that it came out with such 
poor results.” 
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essentially determines everything about the theory (see Section 5.1). Fields are physical reality  
particles are observer-dependent. For example, an accelerating observer may see field 
excitations, i.e. particles, where an inertial observer sees nothing.  aying  e.g. that ‘particles 
collide’ is to imply that the underlying fields interact through these excitations, whereby energy 
and momentum are exchanged, some excitations are annihilated and new excitations are 
created. All fields exist at all points in time and space. ([T5]) 

Take note that there are no macroscopic fields except for the electromagnetic field (and 
gravitation). The fundamental excitations of all spinor (i.e. matter) fields can never occupy the 
same state (due to the Pauli exclusion principle  see Remark 2.1) and thus cannot reinforce one 
another to produce a macroscopic field. The only known fundamental scalar field (the Higgs 
field) is massive and thus does not operate on macroscopic scales. And finally, all gauge fields 
(except for the electromagnetic field) also cannot operate at macroscopic scales. For the gauge 
field responsible for weak interactions, the reason is again that it is a massive field. For the 
strong interaction field  the reason is called ‘confinement’ as we shall see in  ection 7.5. ([N1]) 

Remark 2.4.  The Standard Model (SM) has been extremely successful. In fact, it explained 
almost all experimental results and precisely predicted a wide variety of phenomena. One 
exception is recent data indicating that neutrinos have mass, although the SM assumes that 
neutrinos are massless. Scientists have found that the three neutrinos oscillate, or transform into 
one another, as they move. This property is only possible because neutrinos are not massless 
after all. However, even this can be easily accommodated by an extension to the model.  

Still, there are many questions for which the Standard Model has no answer. For example, 
why there are three generations of matter particles – this is the so-called flavour problem. In the 
everyday world, it seems that only the first-generation particles (i.e. the electrons and the up 
and down quarks) play crucial roles. In view of the simplicity of the fundamental laws of physics, 
the multiple generations of quarks and leptons seem unnecessary. This question, succinctly 
expressed by the famous quip of I.I. Rabi (21), “who ordered that?” (22), uttered in connection 
with the discovery of the muon, has been exacerbated by the discovery of the third generation. 
([I1]) 

Much worse than the number of particles is the fact that the masses of all these particles 
have to be put into the Standard Model ‘by hand’. In other words, physicists measure these 
values experimentally and manually plug the results into the equations. The Standard Model 
tells us nothing about what these masses should be. We know that it is the coupling of the 
fermions fields to the Higgs field that gives the various fermions their mass. But we cannot 
calculate the strength of these couplings. ([W0]) 

Furthermore, the SM says nothing about gravity. The problem is that when one tries to 
construct a theory of gravitation using the language of quantum field theory, the resulting theory 
is non-renormalisable. It means that it produces nonsensical infinities, which cannot be 
eliminated using known mathematical methods, which worked fine in the case of all other fields 
(see Section 7.3 and 7.5) (23). 

And in the final instance, physicists now believe that about 95% of the universe is not made 
of ordinary matter as we know it. Instead, much of the universe consists of dark matter and dark 
energy that do not fit into the Standard Model.  

                                                             

21 Isidor Isaac Rabi (1898 – 1988) was an American physicist who won the Nobel Prize in Physics in 1944 for his 
discovery of nuclear magnetic resonance. 

22 Willis Lamb echoed this sense of frustration in his 1955 Nobel lecture when he said: “…the finder of a new 
elementary particle used to be rewarded by a Nobel Prize, but such a discovery now ought to be punished by a 
$10,000 fine.”  [B ] . Willis Eugene Lamb Jr. (1913 – 2008) was an American physicist who won the Nobel Prize in 
Physics in 1955. 

23 Feynman discovered that any direct quantisation of gravity leads to an infinite numbers of infinities rendering the 
theory non-renormalisable. 
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3. Basic concepts 

In this chapter, I discuss the meaning of a few very important concepts which we shall use in the 
following chapters (see [A1], [S2] and [S17] as a general reference for this chapter).  

3.1. Spacetime 

In Newtonian physics, space and time never get mixed up. The two concepts are separate and 
distinct. To Newton, three-dimensional space was space, and time was universal time. They were 
entirely separate, the difference being absolute ([S17]). The Galilean transformation of classical 
mechanics expresses the assumption of a universal time independent of the relative motion of 
different observers. Thus the transformation guarantees that the time at which any event 
happens is the same in all inertial frames. In relativistic physics, however, space and time 
become intertwined through the Lorentz transformations (see Section 3.2). Time intervals and 
space intervals are not the same to all observers, but instead become mixed with one another. 
What is purely a distance to one observer may correspond to both a distance and a time interval 
to an observer in a different frame of reference. ([H4], [W11]) 

Spacetime is a conceptual model combining the three dimensions of space with the fourth 
dimension of time. To describe the location of an object, we introduce a coordinate system (i.e. a 
reference frame). Each location is then described by three numbers (x, y, z) and the distance ds 
between any two objects can be calculated using the Euclidean metric ds =  x  +  y  +     
(where ds  stands for  ds   and  x  for   x   and so on). 

However, in physics, we are not only interested in knowing where something happens but 
also when. Therefore, to properly describe an object in physics, we actually need four numbers 
(t, x, y, z), where t is the time coordinate. This means that we consider a four-dimensional space 
with a spacetime coordinate system. Thus a reference frame is a coordinate system for both 
space and time. A reference frame is chosen as a matter of convenience, and generally varies 
from one observer to another. To relate data from different frames, we need a rule that 
translates the reading in one frame to another. This is called a transformation law. 

While (x, y, z) describes the location of an object in space, (t, x, y, z) describes the location of 
an event in spacetime (24). Now the problem is that the differences in the spatial components 
( x,  y,  z) are measured e. g. in meters, while  t is measured in time units. To fix this problem 
one introduces a constant c which has units of meter per second: (ct, x, y, z).  

The constant c encodes the maximum speed at which anything can travel in spacetime. It is 
called the speed of light because light travels (in vacuum) at this maximum speed.  The constant 
c is essential since time and space components can get mixed if we change the coordinate 
system. Note: ct is the distance light travels in time t. 

Now, what is the distance between two events in spacetime? Using Pythagorean theorem we 
might write down (the symbol = means that we are dealing with a definition) 

(3.1)                     ds  := c  t  +  x  +  y  +    . 

But as Einstein figured out this formula is NOT the right one. Instead, the correct expression 
for the spacetime distance between events (called spacetime interval ) is 

(3.2)                   ds  := c  t    x    y      . 

It means that the local structure of spacetime is not Euclidean (3.1) but Minkowskian (3.2). 
What makes Minkowski (25) space different from Euclidean space is the way we define distances 

                                                             

24 An event is something that happens independently of the reference frame that might be used to describe it. There 
are many sets of coordinates and therefore many descriptions of the same events. The principle of relativity means 
that the laws governing those events are the same in all inertial reference frames. An inertial frame is one in which a 
particle, with no external forces acting on it, moves in a straight line with uniform velocity. ([S16]) 

25 Hermann Minkowski (1864 – 1909) was a mathematician and professor at Königsberg, Zürich and Gottingen. In 
different sources Minkowski's nationality is variously given as German, Polish, Lithuanian-German or Russian. At the 
Eidgenössische Polytechnikum, today the ETH Zurich, he was one of Einstein's teachers ([W11]). 
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in it. We denote the 4-dimensional Euclidean space as    and the 4-dimensional Minkowski 
space as      (=     ), or shortly as   (26).  

Minus sign in the definition (3.2) of the Minkowski metric (27) is motivated by the physical 
meaning of ds2. The spacetime interval ds  between two events is equal to the (squared) time 
interval measured by an observer for whom the object in question appears at rest (multiplied by 
the constant c ) (28). And since in special relativity ds  must be independent of the inertial frame 
of reference (29) (i.e. unchanged when the coordinates are Lorentz transformed (30)), we have to 
take minus sign when defining it ([S2]).  

Example 3.1. ([H5]) Consider the following events: 

Event A: a solar flare erupts on the sun. 

Event B: an astronomer witnesses the flare from an observatory on Earth. 

Event C: the astronomer takes a drink 5 minutes (300 seconds) after the solar flare occurred 
(i.e. 200 seconds before he sees the flare). 

Let us first compute the spacetime interval ds  between A and B. Since light travels directly 
from event A to event B, these two events are light-like separated, so the spacetime interval 
must be zero (31). Indeed, the sun is approximately 150 million kilometres from Earth (as judged 
from our reference frame), and it takes about 500 seconds (8.3 minutes) for light to travel that 
distance, so the astronomer will see the flare 500 seconds after it occurred. The spacetime 
interval AB between events A and B is:  

                  ds  = c  t    x  = (300,000 km/s)2(500 s)2 – (150,000,000 km)2   

                         = (150,000,000 km)2 – (150,000,000 km)2 = 0. 

It is not quite intuitive that the spacetime interval between two events can be zero although 
their spatial distance is huge. 

Now let us compute the spacetime interval between A and C. It takes 500 seconds for light to 
travel between the sun and Earth, so one would have to travel faster than light to get from the 

                                                             

26 We think of time  as well as physical space  as being a ‘Euclidean geometry’  rather than as being just a copy of the 
real line  . This is because both   and    have preferred origin, whereas in Euclidean or Minkowskian geometry 
there is no such preferred element (see e.g. [P5] Chap. 17). 

27 We say that the metric signature is (+, , , ). Equivalently, one may define ds2 with respect to the signature (, +, 
+, +).  This is only a matter of convention. The choice of signature is given a variety of names, for example: 

 (+, , , )   - West Coast metric  Feynman’s favourite 

 (, +, +, +) - East Coast metric. The choice of Pauli, Weinberg and Schwinger. 

Let me note that most particle physicists use the signature (+, , , ) but most relativists use (, +, +, +), and you 
need to be careful when reading equations. Notice that the Minkowski metric ds2 is not actually a metric from the 
viewpoint of topology, since it can take negative values. It is sometimes called pseudo-Riemannian metric.  More 
precisely, to define the distance one has to get square root of ds2, which leads to possibly imaginary distances. Hence 
terms norm and distance are usually avoided and replaced with spacetime interval  ([W11]). 

28 This time is called proper time  and denoted by  .    is just the negative of ds , and is therefore an invariant ([S17]). 

29 Recall that it is a reference frame (i.e. a set of coordinates) in which the observers are not subject to any 
accelerating force. In special relativity, time measurements in inertial frames that are not at rest with respect to each 
other are not equivalent; each inertial frame must have its own time coordinate, the value of which is the time as read 
off a standard clock at rest in that frame (= proper time). This follows from the experimental fact that all (inertial) 
observers measure exactly the same value for the speed of light ([D1]). 

30 Lorentz transformations are discussed in Section 3.2. 

31 Events with zero spacetime separation, ds  = 0, are called light-like separated. Such events are causally related, and 
all observers will agree that they can be connected by a light ray. 
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flare to the event C. Therefore, events A and C are space-like separated (32), and the spacetime 
interval AC must be negative. Let us check:  

                    ds  = c  t    x  = (300,000 km/s)2(300 s)2 – (150,000,000 km)2 

                           = –1.44 ×  0   km < 0. 

Finally, let us compute the spacetime interval between B and C. Since the events B and C 
occurred in the same location, these two events must be time-like separated (33). Let us verify 
that the spacetime interval BC is positive:  

                ds  = c  t    x  = (300,000 km/s)2(200 s)2 – 02 = 3.6 ×  0   km > 0. 

Let us consider the following 44 matrix  

   :=  

 0 0 0
0   0 0
0 0   0
0 0 0   

 , 

where by convention Greek indices ,   run from 0 to 3, so     = 1,     = 1,     = 1,     = 0, 
etc. Putting  x  = c t,  x  =  x,   x  =  y and  x  =  z we can rewrite (3.2) as follows 

  ds  = [ x  x   x  x ]  

 0 0 0
0   0 0
0 0   0
0 0 0   

  

 x 

 x 

 x 

 x 

 . 

Thus the Minkowski metric (3.2) is conventionally denoted by    (and identified with this 
matrix).  In addition, it is also conventional to denote (column) 4-vectors simply by a subscript 
Greek letter: 

         x 
 =  

x 

x 

x 

x 

    

ct
x
y
 

 . 

This might be confusing because exactly the same symbol x  is used for the vector (or    for the 

matrix) and its components. The difference between vectors and components of vectors is not 
always clearly stated in literature and is to be deduced from the context.  

In contrast, the usual 3-vectors, e.g. three-component vectors (x, y, z) that define the location 
of an object in space (not spacetime), are conventionally denoted by a little arrow on top of them 
   or by using italic bold letters (34):  . Thus we will sometimes write x 

 = (ct,  ). For the sake of 

simplicity, x will be used to denote x  when no confusion arises. 

As we have already mentioned, the zeroth component x  of x  is in physics interpreted as 

the time component. This is an arbitrary choice and one could equally take any other component 
as the time coordinate.  

Using this index notation we can write the Minkowski metric as inner product (35) in 
Minkowski space:  

                                                             

32 Events with a negative spacetime separation, ds  < 0, are called space-like separated. Such events are not causally 
related. 

33 Events with a positive spacetime separation, ds  > 0, are called time-like separated. Such events are causally 
related. They are closer together in space than they are in time. 

34 Through the paper italic bold letters will denote 3-vectors. The components of a 3-vector are written as (x, y, z) or 
(x ), or (x , x , x ). In general the Roman indices      , . . . , do not include the  time component. Greek indices μ  ν  ... 
refer to spacetime and take values 0, 1, 2, 3 or t, x, y, z. 
35 Note that the inner Minkowski product is not an inner product in the usual sense, since it is not positive-definite. 
These misnomers  ‘Minkowski metric’ and ‘Minkowski inner product’  conflict with the standard meanings of metric 
and inner product in pure mathematics.  
Instead of  ‘Minkowski inner product’ we will also say ‘scalar product’ for short. 
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(3.3)                                       ds  =  x  
  x   =       

   
 
    x  x . 

It is convenient to introduce superscript indices to avoid writing the Minkowski metric all 
the time:  

x  = [x x x x ] =    x  =  

 0 0 0
0   0 0
0 0   0
0 0 0   

  

ct
x
y
 

  = [ct  x     ]. 

This is known as raising an index (x   x ). Similarly, to lower an index we can write x  = 

 
 

x , where  
 

 is the same matrix as above (36). 

The upper indices are not exponents but are indices of coordinates, coefficients or basis 
vectors. That is, in this context x  should be understood as the second component of x  rather 
than the square of x (this can occasionally lead to ambiguity). Note that the superscript index   
takes four values    {0, 1, 2, 3} (37), one for each element  

                                                     x  = ct, x  = x, x  = y, x  = z.  

Finally, using the index notation, the Einstein summation convention (38) (implicit 
summation on repeated indices), and the Minkowski metric    , we can write the spacetime 
interval in a more compact form: 

ds  =  x  x  =  x  x  =    x  x . 
    

Note that we can use any letter to indicate a summed index:  x  x  and  x  x  are exactly the 

same. 

The Minkowski metric     is also called Minkowski tensor. In mathematics, a tensor is an 
algebraic object that describes a (multilinear) relationship between sets of algebraic objects 
related to a vector space (39). Objects that tensors may map between include vectors and scalars, 
and, recursively, even other tensors ([W11]).  

                                                             

36 In physicists' terminology, a vector whose components are labelled with upper indices is called a contravariant 
vector whereas a vector whose components have lower indices is called covariant. Covariant vectors are in fact 
slightly different objects, they are the dual vectors (or sometimes called covectors), i.e. they are elements of the dual 
space. Inner products are only between contravariant and covariant vectors (or tensor) components. Since Minkowski 
space (as a vector space) is isomorphic to its dual space, we will simply treat covariant and contravariant vectors on 
an equal footing. Keep in mind however, that x and x are different  objects. ([W3]).  
A detailed discussion of this topic would lead us too far astray here.  

37 The symbol ‘∈’ means ‘belongs to’ or ‘is a member of’. 

38 Einstein summation convention ([E2], [W11]) is a convenient notation when manipulating expressions involving 
vectors  matrices  or tensors in general. The ‘rules’ of summation convention are: 

 Each index can appear at most twice in any term.  

 Indices which repeat in an expression are always summed over. This is known as contraction. Greek indices like 
,  ,  are always summed from 0 to 3.  

For example,    v  :=     v 
 
   

 is a valid expression  it is just left-multiplication of vector v  by 44 matrix     = 
[   ]. Technically, one should write   

 v . However, using upper and lower indices on the same object makes 

expressions difficult to read, so it is common lower or raise all the indices. Contracting indices is just a notational 
convention, not a deep property of mathematics ([S1]). 
39 A vector space (also called, interchangeably, a linear space) is a collection of objects called vectors, which may be 
added together and multiplied  ‘scaled’  by real or complex numbers, called scalars.  The operations of vector addition 
and scalar multiplication must satisfy certain requirements. When the scalars are the real numbers, the vector space is 
called a real vector space, and when the scalars are the complex numbers, the vector space is called a complex vector 
space. A complex number  is an element of a number system that extends the real numbers. Every complex number z 
can be expressed in the form z = x + iy, where x and y are real numbers (i.e. x, y   ) and i, called the imaginary unit, 
satisfies the equation i2     . The set of complex numbers is denoted by  .  
A set B of vectors in a vector space V is called a basis (pl.: bases) if every element v of  V may be written in a unique 
way as a finite linear combination of elements of B: v =      + ... +     , where     are scalars and    B for   = 1, 2, ..., 
n.  A vector space that has a finite basis is called finite-dimensional. ([W11]). 
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The Minkowski tensor     is a rank-2 tensor, which means that it assigns a scalar (i.e. 
number) to a pair of vectors – see e.g. (3.3). Exactly speaking, a rank-2 tensor is not just a matrix. 
The Minkowski tensor is only represented by the matrix    ,  but that representation depends 
on the choice of coordinates. 

Tensors can be used to describe physical properties, just like scalars and vectors. In fact 
tensors are merely a generalisation of scalars and vectors; a scalar is a rank-0 tensor, and a 
vector is a rank-1 tensor (see [D4] for more details). 

3.2. Lorentz transformations 

In  905  the ‘annus mirabilis’ of physics  Einstein publishes four ground-breaking articles in 
Annalen der Physik. The first of those papers ([E3]) provides an interpretation of the photo 
effect with the hypothesis of light quanta. In the second paper ([E4]) Einstein develops a 
quantitative formulation of Brownian motion. Finally, in the last two papers ([E5, E6]) of his 
annus mirabilis Einstein formulates the special theory of relativity (SR) (40) that fundamentally 
changed our perceptions of space and time. ([E1]) 

All experimental observations show that our world is relativistic. Consequently, our theories 
of the fundamental interactions must be compatible with  R. In the physicist’s terminology, 
those theories must be the same in all inertial frames. In order to ensure it, we require the 
equations in question to be covariant under Lorentz transformations – that is, they must have 
the same form in the two different frames (41).  

An event, i.e. a point of spacetime, can be labelled by the values of its coordinates in the rest 
frame or by its coordinates in a moving frame. These are two different descriptions of a single 
event. The question is now, how do we go from one description to the other? In other words, 
what is the coordinate transformation relating the rest frame coordinates to the coordinates of 
the moving frame? 

Since the structure of spacetime is non-trivial, one has to be careful when switching 
coordinate systems. Allowed transformations need to respect the laws of special relativity and 
they must leave the spacetime interval ds  unchanged. It means that they leave the scalar 
product in Minkowski space a b

  := a  
 b  unchanged. It is what is called a Lorentz scalar  

([S2]). It is important to understand that the scalar product of two vectors a  and b  is often 

written in many equivalent forms 

(3.4)                                   ab = a b
  = a  

 b  = a b
  + a b

  = a b    a b 
 
     

                                                    = a b   (a b  + a b  + a b ) =  a b   a b. 

It is obvious that the (squared) four-dimensional length we described above can be written as  
a  = a 

  := a a
  = a a   a a  = a 

     . 

One important consequence of the non-trivial spacetime structure is that observers who 
move relative to each other measure different time intervals between two events. In physical 
terms, this means that time appears delayed for the moving observer ([S2]). 

It turns out that there are three kinds of allowed transformations: rotations, boosts, and 
translations. 

 A rotation is a switch to a new coordinate system that is oriented differently with respect to 
the original coordinate system. 

                                                             

40 The designation 'special relativity' is due to the fact that the distinction between space and time is not absolute, but 
'relative'. The theory is considered 'special' as it only deals with reference frames moving at constant velocities. 

41 An equation is covariant if  both sides transform the same way. This implies that the equation remains true after a 
Lorentz transformation. Sometimes, covariant equations are called invariant  see Section 3.6 for details. Lorentz 
transformations were actually known before Einstein. Henri Poincaré, who also suggested the name, gave Lorentz 
transformations their final form in 1905 shortly before the publication of SR. ([E1]) 
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 A boost is a switch to a coordinate system that is moving with a different constant velocity 
with respect to the original coordinate system. 

 A translation is a switch to a shifted coordinate system. Since we are dealing with spacetime, 
we can consider temporal shifts t  t + a or spatial shifts      + b. 

Rotations only affect the spatial components of a 4-vector and can be described by three 
basis matrices defining rotations around the x-axis, y-axis, and z-axis, respectively. Any other 
rotation can be thought of as a combination of rotations around the three coordinate axes. 

For example, the following matrix describes a rotation around the x-axis 

                                     R      = R 
 
    :=  

 0 0 0
0  0 0
0 0 cos     sin    
0 0 sin    cos    

 , 

where  is the angle of rotation (42).  

Rotations, boosts, and all transformations that are possible by combining them are called 
Lorentz transformations. As mentioned above, the temporal component ct is never affected by 
rotations, only by boosts and temporal shifts (i.e. shifts to a different point in time). Thus, one 
can really say that the Lorentz boosts are the ‘interesting’ Lorentz transformations. The 
remainder is just rotations of our familiar 3-dimensional Euclidean space. 

Moreover, we call rotations, boosts, translations, and all their combinations Poincaré 
transformations. 

3.3. Four-vectors revisited 

We called a vector x  = [ct x y  ]  (here written as a transposed row vector) that describes 

the position in spacetime ‘4-vector’. 

One confusing thing is that mathematicians use the word vector quite differently than 
physicists. For mathematicians, any element of a vector space is a vector. Thus for them, a 4-
vector is just an element of a four-dimensional vector space. In contrast, physicists define 
mathematical objects like scalars, vectors, or tensors in terms of how they behave under 
coordinate transformations ([S2]). 

Any set of four quantities that transforms from one Lorentz frame to another just like the 
coordinates ct, x, y, z of a point in spacetime is called a 4-vector (or four-vector). The 
prototypical 4-vector is hence x .  

What does this actually mean? It can be best explained with an example. 

Example 3.2. Let us consider the important energy-momentum vector p  := ( /c,  ) of a 

particle with mass    and velocity u in a Lorentz frame L with coordinates ct, x, y, z. Its spatial 
components are the three components of relativistic momentum 3-vector   = (  ,   ,   ) 

whereas the first component    is the relativistic energy   divided by c, where   = (  c  + 
  

 c )1/2. Recall that    is the squared length of the 3-vector  :    := (  )2 + (  )2 + (  )2 (43).  

Let us show that p  is a 4-vector. 

Assume that L’ is a Lorent  frame with coordinate axes ct’  x’  y’   ’ moving uniformly with 
velocity v = (v, 0, 0) parallel to the x-axis of L. This boost transformation is represented by the 
matrix 

                                                             

42 In Einstein notation, the usual element reference for the mth row and nth column of a matrix A becomes   
 . 

43 For the components of a 4-vector a we will use the notation a0, a1, a2, a3 or at, ax, ay, az.  
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                                               B  = B (v) :=  

   0 0
   0 0
0 0  0
0 0 0  

 , 

where   := v/c and  := 1/      . Then (44) x 
  = B x  and it implies that 

(3.5)             ct’   (ct   x),    x’   (x   ct),    y’   y      ’    . 

The vector p  in order to be a 4-vector has to transform like the position vector x , i.e. in the 

frame L’ the vector p  must be represented by    

(3.6)          /c = ( /c     ),      
  = (      /c),      

  =   ,       
  =   . 

Let us show, for example, that p 
  = (      /c).  

Our particle is moving with velocity u = (  ,   ,     in the frame L.  The second frame L’ is 

moving at velocity v with respect to the first frame, along the x-axis of L, and the particle has a 
velocity u’  = (  

 ,   
 ,   

 ) as seen in the second frame. Recall that the (relativistic) momentum 3-

vector    is given  in the frame L’  by 

   = 
   

 

       ’
    

 , 

where u’ is the magnitude of the velocity u’.  Thus 

                                                                  
  = 

    
 

       ’
    

. 

Since v  = v, the velocity addition law gives us: 

          
  = 

       

   
   

  

  
        

   
  
 

 
. 

Of course,   
  =    and   

  =   .  Using these equalities it is easy to check that  

                                                                 
 

   –   ’
    

   
  –  

  
 

  

   –       
 

Consequently 

        
  = 

    
 

       ’
    

 =    
        

         

         

         
   

            

         
 = (      /c), 

because the relativistic energy    is given by 

                                                                     = 
   

  

         
. 

Comparing (3.6) with (3.5) we infer that   
  = B (v)p . Thus the components of the energy- 

momentum vector p  transform exactly like the coordinates ct, x, y, z. The same holds for all 

other Lorentz transformations and it implies that p  = ( /c,  ) is a 4-vector (45).  

                                                             

44 Recall that x 
  = B x  =  B x 

 
   . This is ‘four equations in one’  since   = 0,1,2,3. 

45 Mind that a 4-vector is not  just some one-dimensional array of four numbers. And it is not  just a matter of adding 
any fourth t-component to a 3-vector. Feynman [F5] gives the following example: consider the velocity 3-vector v  
with components vx = dx/dt, vy = dy/dt and vz = dz/dt. Then vμ = (d(ct)/dt, dx/dt, dy/dt, dz/dt) = (c, v) is not  a 4-
vector. The correct 4-velocity is vμ = (c, v), where  = dt/d and  is the proper time.  
Notice, however, that this vector is not a velocity vector in the conventional sense. It determines rather a kind of a 
direction in the four-dimensional geometry.  ([T5]) 
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Consequently, Lorentz transformations leave the expression p p
  =    c       =   

 c  

invariant, which means that the mass    is invariant under Lorentz transformations. The 
formula   

 c  =    c       is famously known as the relativistic energy-momentum relation. 

Since the scalar product a a
  (46) is invariant under Lorentz transformations for a general 4-

vector a , it gives a powerful method of calculating kinematical variables and their 

transformations from one inertial frame to another (47).  

In physical terms, this means that Lorentz transformations describe changes between 
frames of reference that respect the postulates of special relativity (SR). 

Since the Lorentz transformations are linear (48), the sum and difference of 4-vectors is also 
a 4-vector. New 4-vectors may also be obtained by multiplying/dividing by a scalar invariant, 
such as the proper time interval    or the mass   . 

3.4. Fields 

The most important types of fields for our topics are scalar fields, vector fields, and spinor fields 
([S2]) (49).  

A scalar field is a mapping x   s(x ) that assigns to each spacetime point x  a (real or 

complex (50)) number s(x ). As an example of a scalar field, consider a solid block of material 

that has been heated at some places and cooled at others, so that the temperature of the body 
varies from point to point in a complicated way. Of course, the temperature may change in time. 
Then the temperature will be a function of time and x, y, and z, the position in space measured in 
a rectangular coordinate system. Temperature is a scalar field ([F5]). Another example is the 
Higgs field (see Section 7.3). 

Similarly, a vector field  is a mapping x   v(x ), where v is a vector (i.e. element of a vector 

space). We shall mostly consider 3- and 4-vector fields, i.e. mappings x   v(x ) and x   

v  x   (51), respectively. As an example, consider a rotating body. The velocity of the material of 

the body at any point is a 3-vector which is a function of position (and time). Other examples 
include 4-vector gauge fields, describing spin-1 particles such as the photon (see Section 5.4). 

When talking about quantum matter fields we will need the third kind of field which is 
known as spinor field. A spinor field is a mapping x   (x ) assigning to each spacetime point 

x  a spinor (x ). Since there are different kinds of spinors, there are also different kinds of 

spinor fields. Every fermionic field (i.e. a quantum field whose quanta are fermions: electrons, 
quarks, etc.) is a spinor field. 

Spinors are (unintuitive) two-component objects that live somewhere between a scalar and 
a 4-vector as far as their behaviour under coordinate transformations is concerned. When we 

                                                             

46 Recall that the (squared) length a  of a 4-vector a  is given by the scalar (i.e. inner Minkowski) product of the vector 

a  with the covector a : a  = a a
 . 

47 The Lorentz transformations are sometimes defined as those transformations that leave the scalar product of 
Minkowski spacetime invariant  see Section 3.5. 

48 A linear transformation is a mapping  :     between two vector spaces that preserves the operations of addition 
and scalar multiplication:                                , where   ,       and   ,    are scalars. 

49 These fields are important in particle physics. General relativity requires tensor fields ([F8]).  

50 Recall that every complex number z can be expressed in the form z = x + iy, where x and y are real numbers and i, 
called the imaginary unit, satisfies the equation i2     . To avoid confusion, in this paper the imaginary unit i is 
written in roman typeface, while an index   is written in italics. 

51 Here again we use this standard but somewhat confusing notation for 4-vectors: the same symbol is used for the 
whole vector and its components.  
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want to calculate how a spinor looks like after a rotation or boost, we can no longer use the 44 
matrices as for 4-vectors. Instead, we need 22 matrices. 

We shall discuss spinors later in Section 5.8. But from a mathematical viewpoint spinors 
fields are not special.  For our purposes, a field F is just a mapping that assigns to each spacetime 
point x  a mathematical object F(x ). For example, we will consider below a matrix field x   

M(x ), when talking about Yang-Mills theory. 

There is still one aspect of fields that we need to talk about before we can discuss later how 
fields evolve in spacetime. The field values live in an abstract space ‘on top’ of spacetime. A field 
is an object that glues this abstract space and spacetime together. It is important to keep in mind 
that there is a copy of the basic field space above each spacetime point.  This total field space is 
all these individual basic field spaces taken together ([S2]) (52).  

For example, the values v  of a vector field x  v (x) do not belong to the same vector space 

V. At each point x of spacetime, a different copy    of a basis (‘generic’) vector space V is 
attached (i.e. each    is isomorphic to V (53)). This means that the mapping x  v (x) assigns a 

vector v (x) in the space    to each point x of spacetime. Consequently, one cannot, e.g. just 

simply add vectors v (x) + v (y) (for x  y), because they belong to different vector spaces (54). 

The easiest example to think of is a sphere S in  3 with the tangent planes    attached to each 
point x  S: 

 

Another important observation is that there is a different field space for each field. For 
example, temperatures and the Higgs field occupy different field spaces even though both are 
mathematical scalar fields. 

3.5. Symmetries and groups 

Although the concept of symmetry is familiar to most people, its mathematical definition is not 
that obvious and the symmetries we shall encounter in this article are rather abstract. The 
understanding of symmetries may be one of the biggest obstacles in comprehension of Yang-
Mills theory ([B3]).  

When physicists talk about symmetry, they mean something particular. Symmetry does 
mean a different thing for physicists than for members of the public. Physicists understand 
‘symmetry’ to be transformations that leave the object under study unchanged or ‘invariant’ as 
they usually express it. In physics the object to remain invariant is usually the laws of physics, i.e. 
the considered equations (typically the Lagrangian density  see Section 5.1 for details). Though 

                                                             

52 In technical terms, the total field space is a fibre bundle with spacetime as its base space and basic field spaces as 
fibres.  

53 Two vector spaces V and W are said to be isomorphic  if there exists an one-to-one linear transformation (called 
isomorphism) T from V onto W. 

54 Even though all vector spaces    are isomorphic to V, there is no canonical isomorphism between them. This is an 
issue to deal with when considering e.g. the derivative of a vector field.  To describe the differential evolution equation 
of a field one has to define a connection in the fibre bundle. 
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this definition is technically equivalent with our every day intuition of what symmetry is, it is 
formulated in a rather more abstract fashion and thus takes some time getting used to. ([B3]) 

The concept of symmetry, i.e. the invariance of a theory under certain transformations of the 
quantities contained in it, plays an important, if not the most important role, in the mathematical 
formulation of the laws of nature. 

The symmetries of nature determine the things that remain constant, i.e. are conserved. 
Those are the guideposts in physics, the quantities like energy and momentum. For instance, 
energy is conserved, we now understand, because there is a symmetry of nature that tells us the 
laws of physics do not change over time ([M10]). 

For every global continuous symmetry  i.e. a transformation of a physical system that acts 
the same way everywhere and at all times  there exists an associated time independent 
quantity: a conserved ‘charge’. This connection went unnoticed until 1918 when Emmy Noether 
proved her famous theorem relating symmetry and conservation laws (55). Thus due to the 
invariance of the laws of physics under spatial transformations, momentum is conserved. Due to 
time translational invariance, energy is conserved. And due to the invariance under a change in 
phase of the wave functions of charged particles, electric charge is conserved ([T2]). 

When considering the role of symmetry in physics from a historical viewpoint, it is worth 
keeping in mind the distinction between implicit and explicit uses of the notion. Symmetry 
considerations have always been applied to the description of nature, but for a long time in an 
implicit way only. The real turning point in the use of symmetry in science came, however, with 
the introduction of the group concept and with the ensuing developments in the theory of 
transformation groups ([B7]).  

This is because the group-theoretic definition of symmetry as invariance under a specified 
group of transformations allowed the concept to be applied much more widely, not only to 
spatial figures but also to abstract objects such as mathematical expressions – in particular, 
expressions of physical relevance such as dynamical equations ([F6]). 

A group is defined to be a set G with a composition rule •: G × G   G that combines any two 
elements g and h of G to form an element of G, denoted g•h (or simply gh), such that the 
following three requirements are satisfied ([A1], [B2], [H0], [W11]): 

(G1) Associativity 

(gh)f  = g(hf)   for all g, h, f ∈ G. 

(G2) Identity element  

There is an identity element 1 ∈ G such that 

1g = g1 = g   for all g ∈ G. 

(G3) Inverse element 

For each element g ∈ G there exists an element h ∈ G such that 

gh = hg = 1. 

Such an element is unique, it is called the inverse of g and denoted g  . 

The map G × G   G is called the product operation for the group. Part of the definition of a 
group G is that the product operation map G × G into G, i.e., that the product of two elements of G 
be again an element of G. 

Many physical and mathematical objects or physical theories possess symmetry. If the set of 
given symmetries forms a group, then we can compose them. We usually interpret gh as ‘act 
with h first and then act with g’. (G1) means that ghf does not need brackets because it implies: 

                                                             

55 Informally stated  Noether’s theorem says that to every continuous symmetry of a theory there corresponds a 
conservation law and vice versa. Amalie Emmy Noether (1882 – 1935) was a German mathematician who made many 
important contributions to abstract algebra. 

https://en.wikipedia.org/wiki/Germans
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Abstract_algebra
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act with f then h then g. (G2) says that doing nothing is a symmetry, the identity 1. This 
guarantees that the set G is not empty. (G3) means that a symmetry transformation g can be 
reversed, which gives the inverse g  . The inverse is itself a symmetry. The conclusion is that 
group theory is the mathematical framework of symmetry ([M2]). 

Usually one considers the concept of group as a generalization of the multiplication of 
numbers. However, in a general group the law of combination need not be commutative, i.e. gh  
hg. If it is commutative (gh = hg), the group is Abelian; if not, it is non-Abelian (56). 

Example 3.3. Let O(1,3) denote the set of all real-valued 44 matrices A with the property  

     A =    , 

where     is the Minkowski metric (see Section 3.1) and    denotes the transpose (57) of the 
matrix A. Matrices with this property are called orthogonal. This is the reason for ‘O’ in O     . 
The numbers 1 and 3 refer to the signature of the Minkowski metric. We will show that O(1,3), 
with the ordinary matrix multiplication as the ‘product’  is a group. Since matrix multiplication is 
associative, the condition (G1) is satisfied.  

Let us take any two matrices A, B  O(1,3). Then      A =    and B    B =    . Since 
  B   =  B    we infer that   B     (AB) = (B   )    (AB) = B       A)B = B    B =    . 
Consequently, AB ∈ O     .  

Let I  denote the 44 identity matrix 

                                                        I  :=  

 0 0 0
0  0 0
0 0  0
0 0 0  

 . 

Of course, I A = AI  = A for any 44 matrix A. Moreover I 
    I  = I  

  I  =    . Thus the 
identity I  belongs to O(1,3). 

Now let us take any element A ∈ O     . Then      A =     and multiplying this equality by 
    we get       

 A =        = I . Putting     :=          we obtain      ∈ O      and    A 
= A    = I . Consequently,     is the inverse of A, i.e. the condition (G3) is satisfied. 

The group O(1,3) is not Abelian. Indeed, let (58) 

                                  A =  

 0 0 0
0  0 0
0 0 0   
0 0  0

 ,         B =   

 0 0 0
0 0 0  
0 0  0
0   0 0

 . 

It is easy to show that A, B ∈ O  ,3). Let us compute AB and BA 

                           AB =  

 0 0 0
0  0 0
0 0 0   
0 0  0

  

 0 0 0
0 0 0  
0 0  0
0   0 0

  =  

 0 0 0
0 0 0  
0  0 0
0 0  0

 , 

                           BA =  

 0 0 0
0 0 0  
0 0  0
0   0 0

  

 0 0 0
0  0 0
0 0 0   
0 0  0

  =  

 0 0 0
0 0  0
0 0 0   
0   0 0

 . 

Thus AB  BA and it means that O(1,3) is not Abelian.  

                                                             

56 Abelian groups are named after Norwegian mathematician Niels Henrik Abel (1802  1829). 

57 The transpose    of a matrix A = [   ] is a new matrix whose rows are the columns of the original, i.e.    = [   ]. 

58 A and B are rotation matrices around the x and y axis by /2, respectively  see Section 3.2. 
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Notice that A and B are rotation matrices around the x and y axis by /2, respectively (see 
Section 3.2). It is evident from the following illustration that rotations do not commute: 

                                      

In technical terms, Lorentz transformations are defined as linear transformations L:     
(59) that preserve the inner product of Minkowski space  . Equivalently, every Lorentz 

transformation can be represented as a real-valued 44 matrix  with the property       = 
   , i.e,  ∈ O     . Thus we can identify the set of all Lorenz transformations with the group 
O(1,3), which is therefore called Lorentz group.  

The Poincaré group consists of the Lorentz transformations and translations T in four 
dimensions. Consequently, the Lorentz group is a subgroup of the Poincaré group (60). The 
Poincaré group is the group of special relativity because the assumption of homogeneity of 
spacetime requires the invariance of laws of physics under 4-dimensional translations. 

The application of the theory of groups and their representations for the exploitation of 
symmetries in the quantum mechanics of the 1920s undoubtedly represents the second turning 
point in the twentieth-century history of physical symmetries. It is, in fact, in the quantum 
context that symmetry principles are at their most effective. Wigner and Weyl (61) were among 
the first to recognize great relevance of symmetry groups to quantum physics and the first to 
reflect on the meaning of this ([B7]).  

When we say that nature is invariant under some symmetry, it means 

 all objects in the theory have well-defined transformation properties (i.e. well defined 
‘representation’ of the symmetry group) under the symmetry, and 

 every interaction is invariant under the symmetry transformations. 

                                                             

59 Reminder: L:     is linear if for any two vectors x, y    and any scalar s the following two conditions are 
satisfied:  L(x + y) = L(x) + L(y) and L(sx) = sL(x). 

60 The Poincaré group was later called ‘inhomogeneous Lorent  group’ by Eugene Wigner in his fundamental paper 
[W 0].  The word ‘inhomogeneous’ was added because the group takes into account spacetime translations in 
addition to Lorentz transformations. In the mathematical language  this inhomogeneous group is a ‘semi-direct 
product’ of the spacetime translation group and the four-dimensional Lorentz group ([K1]). The Poincaré group is the 
isometry group of the Minkowski space  .  
Eugene Paul "E. P." Wigner (1902 – 1995) was a Hungarian-American theoretical physicist. He received the Nobel 
Prize in Physics in 1963. 

61 Hermann Klaus Hugo Weyl (1885 – 1955) was a German mathematician, theoretical physicist and philosopher. 
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The ‘objects’ of particle physics are particle fields. The interactions in particle physics are the 
operators in the Lagrangian (see Section 5.1). From a mathematical viewpoint, particle is an 
object that has a well-defined transformation property under Lorentz symmetry ([W2]). 

An important distinction in the study of symmetries in physics is the one between external 
and internal symmetries (see e.g. [F15]). External symmetries are coupled to the Poincaré 
group, i.e. they are the symmetries of spacetime. 

However, in field theory, new symmetries also appear which do not have an analogue in the 
classical mechanics of particles.  We shall see later that the symmetries of a theory are not 
limited to the invariance under coordinate transformations. At least as important is the class of 
internal symmetries (so-called gauge symmetries), i.e. transformations unrelated to the 
spacetime coordinates of the system. 

These are the internal symmetries, which will be discussed below in the context of Yang-
Mills theory. Internal symmetries act on fields, not directly on spacetime. That is, they work in 
mathematical spaces that are generated by the fields. 

As we shall see, internal symmetries are symmetries that arise in the Lagrangian because 
fields appear in a symmetric way, e. g. a complex scalar field  can be invariant under the global 
phase shift    e  . In the group theoretical language, this symmetry is described by U(1) (62). 
These symmetries are internal in the sense that they do not ‘see’ the Poincaré group (63).  

Another important distinction in physics is between global and local.  Global symmetries are 
transformations that leave the physics unchanged and apply in the same way in all of spacetime. 
Examples are Lorentz transformations.  

A system that has local symmetries is invariant under transformations that change from 
point to point, i.e. different transformations are carried out at different individual spacetime 
points.  An example of such a transformation is a deformation in which every point is translated, 
but by a different amount. 

The global symmetries are found to be associated with properties of particles, e. g., whether 
they are matter or antimatter, whether they carry electric charge, and so on. Local symmetries 
are found to be associated with forces. In fact, all the fundamental interactions of nature are 
related to very special local symmetries. The latter class of symmetries goes under the name of 
gauge symmetries. The work of C.N. Yang and R. Mills reveals the significance of these 
symmetries. ([M0]) 

To illustrate how a gauge symmetry leads to interactions, we shall look at a toy model 
describing a simplified financial market (see [B3], [S3a] and references therein). 

Example 3.4. Let us assume that our simplified financial market consists of several countries 
and the basic process we try to describe is that money and goods can be traded and carried 
around. For concreteness, we call the countries Germany, Czech Republic and Poland, and the 
currencies Euro (EUR) in Germany, Czech Crown (CZK) in Czech Republic, and Zloty (PLN) in 
Poland.  

In an isolated country it is in principle possible to rescale all monetary values with any factor 
and nothing in the economy would change. If we for example multiply all prices with 10 
everything will look very expensive, but if we at the same time multiply all salaries, savings and 
loans with the same number nothing really changes (we pretend this rescaling would work 
perfectly). A crucial observation is now that we deal with a global symmetry since the absolute 
value of fiat money is, in general, not determined. We can shift the currency or alternatively, all 
prices without any physical effect. 

                                                             

62 U(1) is the simplest internal symmetry group – see Section 5.5 for details. 

63 In the mathematical language, this means that the generators of an internal group commute with all generators of 
the Poincaré group. 
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In the real world, different countries scale their economy differently. How then to deal with 
Euro when we come e.g. to Czech Republic? This is only possible if we introduce bookkeepers 
which keep track of the values of the local currencies and are able to exchange one currency for 
another. We can then imagine that the bookkeepers always adjust their exchange rates perfectly 
whenever the value of a local currency changes. With the exchange rates in place we see that our 
scaling symmetry is now local, we can scale the economy of every country independently of the 
other countries. We can therefore say that as soon as we introduce bookkeepers, our system is 
invariant under local transformations. It is conventional to call this invariance gauge symmetry. 

So far, our bookkeepers are purely mathematical ingredients which we introduced to make 
our description invariant under local transformations. In our finance example, it is easy to 
imagine that bookkeepers can influence the dynamics of a system and even become dynamical 
actors on their own. We can imagine that there are imperfections in the exchange rates, i.e. that 
the exchange rates fluctuate. If this is the case, a trader can buy and sell currencies since this can 
be a lucrative business. And this is an explicit example of how our bookkeepers can influence the 
dynamics of the system. 

For example, let us imagine the exchange rates are as follows EUR/CZK = 30, CZK/PLN = 0.2 
and PLN/EUR = 0.3. Now a trader is able to earn money simply by trading currencies. If he starts 
with 1 EUR, he can trade it for 30 CZK, then use it to buy 6 PLN, and finally trade these for 1.8 
EUR. This means that the trader has more money than he started with and if this is the case, 
investors will travel this circle over and over again to make money. Consequently, fluctuations in 
the exchange rates produce a ‘force’ that makes investors move around in this circle. 

In this example we can also see that the interaction goes both ways, we know from the real 
world that movements of money between countries will change the exchange rates. In other 
words, the exchange rates affect the money and the money affects the exchange rates.  

Promoting bookkeepers (exchange rates) to dynamical objects which follow their own rules 
turns our model of the financial market into a gauge theory with the exchange rates as a ‘gauge 
field’.  It means that exchange rates are adjusted dynamically depending on what else happens in 
the system. 

In general, as we shall see, a theory that is globally invariant will not be invariant under 
locally varying transformations. The invariance under gauge transformations requires the 
introduction of gauge vector fields, which are interpreted as the quanta mediating the 
interactions among the fermions that are the fundamental constituents of matter. Gauge 
symmetries leave certain quantum numbers such as spin or quark colour unchanged. As an 
example, we will discuss in Chapter 7 the isospin symmetry group SU(2) and the colour 
symmetry group SU(3), which are of great importance for the physics of weak and strong 
interactions. 

We shall see all these things more clearly when we go into more detail, but the important 
conceptual point to be grasped is this: one may view these special force fields and their 
interactions as existing in order to permit certain local invariances to be true. ([A1]) 

3.6. Invariance and covariance 

Before we move on, we have to clarify two important notions, which we have already come upon 
above.  Firstly, we call something invariant, if it does not change under transformations. 

For instance, let us consider a quantity like Q = Q(A, B, C, ...) that depends on other 
quantities A, B, C, ... . If we transform A, B, C, ...  A’, B’, C’, ... and we have Q(A’, B’, C’, ...) = Q(A, B, 
C, ...) then Q is called invariant under this transformation. We can express this differently using 
the word symmetry. Symmetry is defined as invariance under a transformation or class of 
transformations. 
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For example, the spacetime interval between two events remains the same, i.e. invariant, 
under Lorentz transformations. In the same way, the scalar product a b

  of any two 4-vectors is 

also invariant under Lorentz transformations. 

Covariance means something similar, but may not be confused with invariance. An equation 
is called covariant, if it takes the same form when the objects in it are transformed. For example, 
as we shall see in Section 4.3, the Maxwell equations of electrodynamics are Lorentz covariant, 
the word ‘covariant’ here meaning precisely that both sides of an equation transform in the same 
way (i.e. consistently) under Lorentz transformations ([S2]). 

In other words, saying that objects are Lorenz invariant means that they do not depend on 
our Lorentz frame at all, while objects being Lorentz covariant means that they do change in 
different frames, but precisely as the Lorentz transformation dictates ([S1]). 

Confusingly enough  this use of the word ‘covariant’ is evidently quite different from the one 
encountered previously in an expression such as ‘a covariant 4-vector’  where it just meant a 4-
vector with a downstairs index (see footnote (36)). This new meaning of ‘covariant’ is actually 
more accurately captured by an alternative name for the same thing, which is 'form invariant'. 

Why is this idea so important? Consider the special relativity principle, which states that the 
laws of physics should be the same in all inertial frames. The way in which this physical 
requirement is implemented mathematically is precisely via the notion of covariance under 
Lorentz transformations. For, consider how a law will typically be expressed. Relative to one 
inertial frame, we set up a coordinate system and describe the phenomena in question in terms 
of suitable coordinates, and such other quantities (forces, fields, etc) as may be necessary. We 
write the relevant law mathematically as equations relating these quantities, all referred to our 
chosen frame and coordinate system. What the relativity principle requires is that these 
relationships  these equations  must have the same form when the quantities in them are 
referred to a different inertial frame ([A1]).  

Note that we must say ‘have the same form’  rather than ‘be identical to’  since we know that 
coordinates, at least, are not identical in two different inertial frames. This is why the term ‘form 
invariant’ is a more helpful one than ‘covariant’ in this context  but the latter is more commonly 
used ([A1], [S2]). 

3.7. Natural units 

In particle physics, a widely adopted convention is to work in a system of units, called natural 
units, in which the speed of light is set equal to unity ([A1], [M1]):  

c          

where   (called  –bar) (64) is the reduced Planck’s (65) constant introduced by Dirac (66) for 
    , where   is the Planck’s constant. This avoids having to keep track of untidy factors of   
and c throughout a calculation; only at the end is it necessary to convert back to more usual 
units. 

To understand the meaning of these units, observe first of all that   and c are universal 
constants, i.e. they have the same numerical value for all observers. The speed of light has the 
value c = 299,792,458 m/s,  but instead of using the meter, we can decide to use a new unit of 
length (or a new unit of time) defined by the statement that in these units c = 1. 

The Planck’s constant (or Planck constant)   is another universal constant . It is the quantum 
of action (67) – the fundamental quantity in quantum mechanics that sets the scale for quantum 

                                                             

64 The numerical value of   is 1.055 × 10 34 m2kg/s. 

65 Max Karl Ernst Ludwig Planck (1858 – 1947) was a German theoretical physicist – 1918 Nobel Prize in Physics. 

66 Paul Adrien Maurice Dirac (1902 –1984) was an English theoretical physicist who is regarded as one of the most 
significant physicists of the 20th century – 1933 Nobel Prize in Physics. 
67 Roughly speaking action  is a physical quantity which is equal to the kinetic energy, minus the potential energy, 
integrated over time [F4]. 
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mechanical effects. It gives the ratio of the energy of a photon to its frequency, and by the mass-
energy equivalence, the relationship between mass and frequency. By choosing units such that c 
= 1, units of mass and length retain their SI definitions (68) in terms of kilograms and meters, but 
time is transformed into a length and velocity is dimensionless. 

In particle physics a useful unit of energy is the electron-volt (eV) equal to the energy gained 
by an electron when the electrical potential at the electron increases by one volt (notice that eV 
is not an SI unit). The electron-volt equals 1.602 ×  0    joule. The abbreviation MeV indicates 
 0  (1,000,000) electron-volts; GeV,  0  (1,000,000,000); and TeV,  0   (1,000,000,000,000). 
([B9]). By mass-energy equivalence   =  c , the electron-volt corresponds to a unit of mass. It 
is common in particle physics, where units of mass and energy are often interchanged, to 
express mass in units of eV/c , or in terms of eV using natural units with c set to 1. An electron, 
for instance, has a mass of 0.511 MeV, that is about  0    kg. A proton has a mass of 938 MeV, 
which is 1,836 times the mass of an electron. 

A typical length-scale in particle physics is the fermi: 1 fm =  0    m  the radius of a 
proton. Then, in natural units, 1 fm  1/200 MeV. 

4. Classical electrodynamics as a gauge theory 

In a famous 1954 paper [Y1], C.N. Yang and R.L. Mills proposed a broad class of classical field 
theories, which are known today as Yang-Mills theories. Inspired by Maxwell's theory of 
electromagnetism, Yang and Mills studied a more general (non-Abelian) gauge symmetry. 

 When quantised, those Yang-Mills theories became the mainstay for developments in 
particle physics in the second half of the twentieth century. As noted above, examples of 
quantised Yang-Mills theories include many of our most important and successful physical 
theories, including quantum electrodynamics (QED), the electroweak theory, the standard 
model of particle physics (SM), and the GUTs  grand unified theories. ([N2]) 

Although general relativity (GR) also satisfies a ‘gauge symmetry’ (principle of general 
covariance), it is not known whether it is possible to cast it as a Yang-Mills theory. This is rather 
unfortunate because quantisation of Yang-Mills theories is well understood, but not of general 
gauge theories (69) ([N2]). 

However, what is today understood by the term ‘Yang-Mills Theory’ is very far from the 
original formulation of Yang and Mills. In 1954, Yang and Mills looked at a very special problem 
related to so-called ‘isospins’ and did not formulate the theory in the abstract language of 
‘principal fibre bundles’, which is the standard way today. (70) 

We begin with a brief review of classical electrodynamics, which is a simple example of a 
gauge theory (see [A1], [F2F6] and [S17] as a general reference for this chapter). The particular 
local invariance relevant to electromagnetism is the gauge invariance of Maxwell equations: in 
the quantum form of the theory (i.e. in quantum electrodynamics QED), this property is directly 

                                                             

68 The International System of Units (SI) is based on the meter-kilogram-second (MKS) system of units. 

69 From a mathematical viewpoint, the structure group (gauge group) in a Yang-Mills theory is a compact Lie group 
(see  Section 7.2   which does not always have to be the case in a general ‘gauge theory’. For example the structure 
group Diff( ) (= group of diffeomorphisms on the spacetime manifold  ) in general relativity is not even locally 
compact. However, a relationship of Yang-Mills theory with the gauge description of general relativity remains an 
active area of research. 

70 Gauge fields are defined on principal fibre bundles as connection 1-forms with values in the Lie algebra of the gauge 
group. These fields correspond in the related quantum field theory to gauge bosons. Matter fields (i.e. fermionic 
fields) are introduced using ‘associated vector bundles’. Connections  the gauge fields  define a covariant derivative 
on these associated vector bundles, leading to a coupling between gauge fields and matter fields ([H2]). 
    This highly abstract formalism is presumably the reason that for a considerable period of time the present author 
was unable to comprehend the meaning of Yang-Mills or, more generally, of a gauge theory in physical terms. It was 
only when he had gained at least a partial understanding of the concept of gauge symmetry in the theory of 
electromagnetism that he was finally able to grasp what this whole concept was all about. 
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related to an invariance under local phase transformations of the quantum fields. A generalized 
form of this phase invariance also underlies the theories of the weak and strong interactions. For 
this reason, they are all known as gauge theories (of essentially the Yang-Mills type). ([A1]) 

4.1. An interlude on differential field operators 

To discuss the Maxwell differential equations of electromagnetism, we must first recall some 
concepts of differential 3-vector calculus. This calculus is an extension of normal differentiation 
applied to scalar and vector fields (see [S17] as a general reference for this section).  

The basic differential operator is  (called del or nabla) which is defined (in Cartesian 
coordinates) in terms of partial derivative operators as  = (/x, /y, /z).  is used as a 
shorthand form to simplify expressions for the gradient, divergence, curl, and Laplacian. 

 Gradient of a scalar field  3-vector field 

The gradient  s of a scalar field x   s(x ) is defined as the 3-vector  

                                                           s := (s/x, s/y, s/z). 

The gradient vector s always points in the direction of maximum change of the function (x, y, z) 
 s(x, y, z) and its length indicates the rate of change of the function in this direction.  

 Divergence of a 3-vector field  scalar field 

The scalar product of  and a 3-vector field x    (x ) = (  ,   ,   ) is known as the 

divergence of   

                                                       = div    :=   /x +   /y +   /z.   

It is a scalar quantity which indicates the tendency of the field at a specific location to spread out. 
In technical terms, the divergence represents the volume density of the outward flux of a vector 
field from an infinitesimal volume around a given point. In physical terms, the divergence is the 
extent to which the vector field flux behaves like a source at a given location. A point at which 
the flux is outgoing has positive divergence, and is often called a source of the field. A point at 
which the flux is directed inward has negative divergence, and is often called a sink of the field 
([W11]). If the divergence is zero at a given point then the flux that goes into the point must 
come out of it, i.e. this point is neither a source nor a sink of the field. 

 Curl of a 3-vector field  3-vector field 

The vector product of  and a 3-vector field x    (x ) gives the curl of   

                             ×  = curl   = (  /y    /z,     /z    /x,     /x    /y). 

Consequently, the curl of a 3-vector field is again a 3-vector field. The curl indicates the 
rotational ability of the vector field at a given location. To see what curl means globally, imagine 
dropping a leaf into a fluid. As the leaf moves along with the fluid flow, the curl measures the 
tendency of the leaf to rotate. If the curl is zero, then the leaf does not rotate as it moves through 
the fluid. Note, however, that some points in the field can have zero curl while others have 
nonvanishing curl. 

 Laplacian of a scalar [vector] field  scalar [vector] field 

The Laplacian   s of a (twice-differentiable) scalar field s = s(x ) is defined as the scalar  

                                  s := (s) = ()s  =  s/   +  s/   +  s/  . 

Thus the Laplacian is the divergence of the gradient. The operator   is also called Laplace 
operator and denoted by  . The value of  s at a particular point tells us how the value of s at 
that point compares to the average value of s at nearby surrounding points. 

When the Laplace operator is applied to a vector field x    (x ), it generates a vector field 
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                                                            := ( )  ×(× ). 

In Cartesian coordinates, the resulting vector field is equal to the vector field of the scalar 
Laplacian applied to each vector component ([W11]) 

                                                             = (   ,    ,    ). 

4.2. Maxwell’s equations 

The basic laws of classical (i.e. non-quantum) electromagnetism are governed by the Maxwell’s 
equations ([F2], [F3]). These equations were first completely formulated by Maxwell (71) in 
Treatise on Electricity and Magnetism in 1873. He took a set of known experimental laws 
(Gauss’ Laws, Faraday's Law, and  mpère’s Law) and unified them into a set of four differential 
equations.  

The most common description of the electromagnetic field uses two 3-vector fields called the 
electric field  x    (x ) = (  ,   ,   ) and the magnetic field x    (x ) = (  ,   ,   ).  

Maxwell’s equations describe how these fields propagate, interact, and how they are influenced 
by charges. Maxwell’s equations read as follows 

 Gauss’ Magnetic Law 

(M1)                                   ⋅  = 0                   

 Faraday’s Law of Induction 

(M2)                                                              ×  +  /t = 0      

 Gauss’ Electric Law 

(M3)                                 = /               

 Ampère-Maxwell’s Law  

(M4)                             c ×    /t =  /  ,  

where ρ is the charge density,    is the electric constant, and   is the current density. In general, 
the quantities ρ and   depend on time and position. Charge density ρ is the amount of charge per 
unit volume. It is a scalar. Current density 3-vector   = (  ,   ,   ) is the current per unit area. It 

represents the flow of charge, e.g. the flow of electrons through a wire. The constant c  in (M4) 
is the square of the velocity of light. It appears because magnetism is in reality a relativistic 
effect of electricity. The constant    has been stuck in to make the units of electric current come 
out in a convenient way. 

Equations (M3) and (M4), which have sources on the right-hand side, are called the Maxwell 
Field Equations. Equations (M1) and (M2) are called Bianchi Identities. 

How many Maxwell’s equations are altogether?  ctually there are eight  although in vector 
notation we see only four: two 3-vector equations (M2) and (M4), and two scalar equations 
(M1) and (M3). But equations (M2) and (M4) have three components apiece. For example, 
equation (M2) amounts to 

  /y    /z    /t = 0,     /z    /x    /t = 0,    /x    /y    /t = 0. 

What do Maxwell’s equations mean? The first Maxwell's equation ⋅  = 0 says that there 
cannot be magnetic charges. While we have electric charges, there is no configuration with 
magnetic field vectors diverging from a single point  a magnetic monopole. Equation (M1) 
states that the magnetic field tends to wrap around things  since the divergence is zero, the 
fields tend to form closed loops. 

The second equation (M2), that the curl ×  of   is  ∂  ∂t  is Faraday’s law and is 
generally true. It tells us that a magnetic field that is changing in time will give rise to a 

                                                             

71 James Clerk Maxwell (1831 – 1879) was a Scottish mathematician and scientist responsible for the classical theory 
of electromagnetic radiation. 
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circulating electric field. This equation describes many phenomena of great practical interest, 
such as those that occur in electric generators and transformers.  A moving magnet must make 
an electric field. How that happens is said quantitatively by (M2). 

The third equation  M     that the divergence   of   is the charge density  over      is 
true in general. In dynamic as well as in static fields  this Gauss’ law is always valid. The flux 
of   through any closed surface is proportional to the charge inside. Thus Gauss' law says that 
electric field lines diverge away from electric charges. More precisely, positive charges act as a 
source, whereas negative charges act as a sink of electric fields (cf. Section 4.1). Consequently, 
electric field lines begin and end only at charges or at infinity. 

The last equation (M4) tells us that a flowing electric current gives rise to a magnetic field 
that circles the wire. In addition to this, it also says that an electric field that is changing in time 
gives rise to a magnetic field that encircles the electric field.  

Equation  M4  was discovered by Maxwell. Before Maxwell’s work the  mpère’s law for 
steady current was known only as: c ×   =  /  . Maxwell noticed that there was something 
strange about this equation. If one takes the divergence of this equation, the left-hand side will 
be zero, because the divergence of a curl ⋅(× ) is always zero.  

Indeed, for any 3-vector field   = (Ax, Ay, Az) we have 

⋅(×  ) = [/x, /y,  /z ]

 
 
 
 
 
   

  
  

   

  

   

  
  

   

  
   

  
  

   

   
 
 
 
 

 =  

/x(  /y     /z) + /y (  /z     /x) + /z (  /x     /y) = 

       (   /xy      /yx         /xz +    /zx) + (   /yz      /z y) = 0. 

So the  mpère’s law requires that the divergence ⋅  of   also be zero. But if the divergence 
of   is zero, then the total flux of current out of any closed surface is also zero. This can only be 
true in situations where the charge density is constant in time. The flux of current ⋅  from a 
closed surface is the decrease of the charge inside the surface. This certainly cannot in general be 
zero because we know that the charges can be moved from one place to another. For the general 
case  Maxwell modified  mpère’s law to be read as  M4 . Maxwell’s addendum is the term  /t, 
known as the displacement current. The presence of this term makes a great difference, for now 
there is the possibility for wave motion. 

The electromagnetic force, also called the Lorentz force, explains how both moving and 
stationary charged particles interact. It is called the electromagnetic force because it includes 
the electrical force and the magnetic force.  

The electrical force, like a gravitational force, decreases inversely as the square of the 
distance between charges. This relationship is called Coulomb’s law. But it is not precisely true 
when charges are moving   the electrical forces depend also on the motions of the charges in a 
complicated way. One part of the force between moving charges we call the magnetic force. It is 
really one aspect of an electrical effect. Electrical and magnetic forces are closely related to each 
other. An electrical force in one frame of reference becomes a magnetic force in another frame, 
and vice versa. In other words, electrical and magnetic forces transform into each other under 
Lorentz transformation. That is why we call the subject electromagnetism. 

There is an important general principle that makes it possible to treat electromagnetic forces 
in a relatively simple way. The force that acts on a particular charge   no matter how many 
other charges there are or how they are moving   depends only on the position of that 
particular charge, on the velocity of the charge, and on the amount of charge. We can write the 
electromagnetic force    on a charge   moving with a velocity    as 

(4.1)                                  =  (  +  × ). 
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The two terms represent the electrical force    and the magnetic force  ( × ), which are 
proportional to the charge  . The electrical force is independent of the particle’s velocity. The 
magnetic force is more complicated and involves the vector cross product. The reason for it is 
that the direction of the magnetic force depends not only on the direction of the magnetic field 
but varies also according to the direction of the velocity vector. The expression  ×  says that 
the magnetic force is perpendicular to both the magnetic field   and the velocity  .  

You can experience the first term    of equation (4.1) when combing your hair. The second 
part can be demonstrated by passing a current through a wire which hangs above a bar magnet 
([F2; Fig. 1-6]). The wire will move when a current is turned on because of the force  ( × ). 
When a current exists, the charges inside the wire are moving, so they have a velocity  , and the 
magnetic field from the magnet exerts a force on them, which results in pushing the wire 
sideways.  

Equations (M1) through (M4), together with the Lorentz force equation (4.1), are all the 
laws of electrodynamics. Electromagnetic fields control (charged) particles through the Lorenz 
force  while charges control fields through Maxwell’s equations. L. Susskind (72) paraphrasing of 
John Wheeler’s slogan  73), puts this in following words: fields tell charges how to move; charges 
tell fields how to vary ([S17]). 

From (M3) and (M4) we infer the equation (the continuity equation for electric charge) 

(4.2)                                 =  /t 

which is at heart of electrodynamics and expresses the very fundamental law that electric charge 
is conserved   any flow of charge must come from some supply. 

Indeed, by (M4) we have 

0 = ⋅(c ×  ) = ⋅( /   +  /t ) = ⋅ /   + ⋅( /t) = ⋅ /   + /t (⋅  ). 

Thus applying (M3) we get   =  /t. 
 

It follows from the continuity equation (4.2) that the rate of decrease of charge in any 
arbitrary volume V is due precisely and only to the flow of the charge through the walls of its 
surface; that is, no net charge can be created or destroyed in V. Since V can be made as small as 
we please, this means that electric charge must be locally conserved: a process in which charge 
is created at one point and destroyed at a distant one is not allowed, despite the fact that it 
conserves the total charge overall or ‘globally’.  

The ultimate reason for this is that the global form of charge conservation would necessitate 
the instantaneous propagation of signals, and this conflicts with special relativity (74). 

                                                             

72 Leonard Susskind (1940 –) is an American physicist, a professor of theoretical physics at Stanford University. 

73 J. Wheeler summed up general relativity in words as follows: “spacetime tells matter how to move; matter tells 
spacetime how to curve.” John  rchibald Wheeler (1911 – 2008) was a prominent American theoretical physicist. He 
coined the term ‘black hole’. Two of his students  Richard Feynman and Kip Thorne  received Nobel Pri es. 

74 Question: Would you distinguish local conservation laws from global conservation laws. 
     Feynman: If a cat were to disappear in Pasadena and at the same time appear in Erice, that would be an example of 
global conservation of cats. This is not the way cats are conserved. Cats or charge or baryons are conserved in a much 
more continuous way. If any of these quantities begin to disappear in a region, then they begin to appear in a 
neighbouring region. Consequently, we can identify the flow of charge out of a region with the disappearance of 
charge inside the region. This identification of the divergence of a flux with the time rate of change of a charge density 
is called a local conservation law. A local conservation law implies that the total charge is conserved globally, but the 
reverse does not hold. However, relativistically it is clear that non-local global conservation laws cannot exist, since to 
a moving observer the cat will appear in Erice before it disappears in Pasadena. 

– From the question-and-answer session following a lecture by R. P. Feynman at the 1964 International School of 
Physics ‘Ettore Majorana’ in Erice  [F7]. 
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The most remarkable consequence of Maxwell’s equations is that the combination of (M2) 
and (M4) contains the explanation of the radiation of electromagnetic effects over large 
distances. The reason is roughly something like this: suppose that somewhere we have a 
magnetic field which is increasing because, say, a current is turned on suddenly in a wire. Then 
by (M2) there must be a circulation of an electric field. As the electric field builds up to produce 
its circulation, then according to (M4) a magnetic circulation will be generated. But the building 
up of this magnetic field will produce a new circulation of the electric field, and so on. In this 
way, fields work their way through space without the need for charges or currents except at 
their source ([F2]).  

Any fundamental theory in physics is expected to be in agreement with the principle of 
relativity, i.e. its equations have to be Lorentz covariant. It means that the equations of the 
theory remain true after a Lorentz transformation. A Yang-Mills theory is expected not only to be 
Lorentz covariant but also gauge invariant: its equations should remain unchanged under a 
gauge transformation. It should be noted that, in contrast to the principle of Lorentz covariance, 
the definition and meaning of gauge invariance are dependent on the specific theory under 
consideration. 

Since electrodynamics is a simple example of a Yang-Mills theory we can use it to discuss the 
meaning of ‘Lorent  covariance’ and ‘gauge invariance’. Let us start with Lorentz covariance (75).     

4.3. Lorentz covariance of the Maxwell’s equations 

Lorentz covariance of Maxwell’s equations is certainly the key link between classical 
electrodynamics and special relativity. Generally, it is demonstrated that Maxwell’s equations 
are Lorentz covariant if and only if the electric and magnetic fields, and charge and current 
densities appearing in them transform according to Lorentz transformation laws. As is well 
known, this can be done basically in two ways: either transforming directly Maxwell’s equations 
 ‘steep and difficult mountaineer’s path’  as Einstein originally did or employing the powerful 
and elegant tensorial approach in Minkowski spacetime ([R1]). 

Maxwell’s equations (M1) – (M4) are formulated by means of quantities of vector analysis in 
three dimensions. Now in the case of special relativity, time and space are inextricably mixed, 
and we must do the analogous things for four dimensions: instead of 3-vectors we have to use 4-
vectors (76). 

Let us start with the four-dimensional analogue   of the differential operator     ∂ ∂x, 

∂ ∂y, ∂ ∂z) ([F5]). We might guess that the four-dimensional gradient should be   =  ∂ ∂t, 

∂ ∂x, ∂ ∂y, ∂ ∂z). But this is wrong because this quantity does not behave as a 4-vector. The 
answer is that instead of the incorrect  ∂ ∂t, ), we must define the four-dimensional gradient 
operator by  

                                           :=  ∂ ∂t         ∂ ∂t   ∂ ∂x   ∂ ∂y   ∂ ∂z). 

Then the operator   transforms in the same way as the position vector x  i.e.   is a 4-vector 

(called also 4-vector gradient and sometimes denoted by ∂ ). It simply means that the 4-

gradient of a scalar is a 4-vector. Thus if  is a Lorentz invariant scalar field then   =  ∂ ∂t, 

 ∂ ∂x   ∂ ∂y   ∂ ∂z) =  ∂ ∂t   ) is a 4-vector field. 

The next thing that we have to discuss is the 4-dimensional analogue of the divergence of 3-
vectors ([F5]). We define the divergence   a

  of the 4-vector a  = (a , a) as the scalar product 

(3.4) of    and a : 

                                                             

75 Throughout the remainder of this article we shall generally (unless otherwise stated) use the natural units:  
c        . 
76 As mentioned above, it is possible to verify Lorentz covariance starting from the original Maxwell equations (M1) – 
(M4). This involves however establishing the rather complicated transformation law for the fields   and  . Thus the 
standard way in the literature is to reformulate Maxwell equations in terms of 4-vectors, Lorentz scalars and 
covariant rank-2 tensors. This allows to write Maxwell equations in a manifestly Lorentz covariant form. 
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(4.3)  a
  :=   

  a  = ∂a  ∂t   ∂  a   ∂x   ∂  a   ∂y   ∂  a   ∂z  

              ∂a  ∂t   ∂a  ∂x   ∂a  ∂y   ∂a  ∂z   ∂a  ∂t + a, 

where a  is the ordinary divergence of the 3-vector a (77). The divergence  a
  is an invariant 

and gives the same answer in all coordinate systems which differ by a Lorentz transformation. 

The last operator we want to consider (78) is the scalar product of the gradient 
operator   with itself ([F5]). In three dimensions, such a product gives the Laplacian (see 

Section 4.1) 

                                             =  =  /   +  /   +  /  .  

In four dimensions we get by (3.4) 

 
    ∂ ∂t ∂ ∂t     ∂ ∂x   ∂ ∂x      ∂ ∂y   ∂ ∂y      ∂ ∂    ∂ ∂      /      . 

This operator, which is the analogue of the three-dimensional Laplacian, is called the 

d’ lembertian and is frequently written as    (79) 

(4.4)                            :=  
  =  /      . 

It is manifestly a Lorentz scalar operator since it is built from the contraction of indices (i.e. 
scalar product) on the two 4-gradient operators. 

Now we are going to discuss the 3-vectors  ,   and  . Let us start with the current density  . 
It can be shown that the four quantities ρ    ,   ,    transform as a four-vector (80). Thus we can 

write them as the 4-vector j  :   ρ   ) and call it the electromagnetic 4-current density. It 

represents the distribution of electric charges and currents in space and time. 

 The last step is to consider the 3-vectors   and  . Since these 3-vectors describing the 
electric and magnetic fields have three components each, there is clearly no way in which they 
can be ‘assembled’ into 4-vectors. However, we may note that in four dimensions an 
antisymmetric rank-2 tensor has (43)/2 = 6 independent components (81).  It suggests that 
perhaps we could group the electric and magnetic fields together into a single antisymmetric 
rank-2 tensor     =    (x ) ([P7]). It turns out ([P7]) that we should define its components in 

terms of   and    as follows (82): 

(4.5)                        := 

 
 
 
 
 
0          

  0      

    0    

       0  
 
 
 
 

 

Rows of the matrix (4.5) are labelled by μ and columns by ν. For the matrix components, we will 
use the notation    ,    , ...,    ,    ,    , ...,    , ...,      or    ,    , ...,    ,    ,    , ...,    , ...,    . 

                                                             

77 Note that one has to be careful with the signs. Some of the minus signs come from the definition of the scalar 
product (3.3); the others are required because the space components of   are  ∂ ∂x, etc. 

78 We do not yet have the equivalents of the cross product and the curl operator – we will get to them later on. 

79 There are a variety of notations for the d'Alembertian. The most common are the box symbol   and the box-
squared symbol  2.  Another way to write the d'Alembertian is 2.  ome people define the d’ lembertian with the 
opposite sign to (4.4), so you will have to be careful when reading the literature. 

80 Roughly speaking, an electric charge is Lorentz invariant since all observers will agree on the number of electrons 
in a given closed spatial region  and so they will agree on the amount of charge. Thus ρ must transform like the 0 
component of a 4-vector. In the same way, we may consider the spatial components    of j . which are related to a flow 

of charge. 

81 If a 2-rank tensor F is represented by a 44 matrix F  then F is antisymmetric  (or skew-symmetric) if  F     F  , 

i.e. its transpose  (F )T is equal to its negative.  So, out of sixteen components of F  we get only six different objects. 

82 We shall justify this a little later. 



34 

 

The ‘upstairs’ version of     is (83) 

(4.6)                               = 

 
 
 
 
 

0       

   0      

     0    

        0  
 
 
 
 

 

Now we are ready to see how the Maxwell’s equations look when expressed in terms of    , 

    and j . Maxwell’s field equations (M3) and (M4) become (84): 

(M3+M4)                                            = j /  ,  

where j     ρ   ) ([P7]). 

Indeed, the vector     has the components    ,    ,    ,     so we can write 

(M3+M4) in the form 

                                                    =  

 
 
 
 
 
    

    

    

     
 
 
 
 

  = 

 
 
 
 
ρ   
j    
j    
j     

 
 
 

. 

Now let us show that 

       = [ ∂ ∂t ]

 
 
 
 
 
0          

  0      

    0    

       0  
 
 
 
 

 =  
 

 
 

 
   ×    . (85) 

For    = t we have to multiply [ ∂ ∂ ] = [ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ] by the first 
column of     

                        ∂0 ∂t   ∂   ∂x   ∂   ∂y   ∂   ∂z =  . 

But by (M3+M4)       ρ    and this implies that     ρ   . Thus the field equation 

(M3+ M4) embodies (M3). Now for   = x we get 

             ∂      ∂t   ∂0 ∂x   ∂   ∂y   ∂    ) ∂z  

                                  =  ∂   ∂t    ∂   ∂y   ∂   ∂z) =  ∂   ∂t + (× )x. 

But      = j / 0 and consequently (× )x = j /     ∂   ∂t. 

Similarly we can show that (× )y =  j /     ∂   ∂t and (× )z =  j /     ∂   ∂t. Putting 

these three equalities together we get the equation (M4): ×  =  j/   +  /t. 

Consequently (M3+M4) is equivalent to Maxwell’s field equations (M3) and (M4). 

The remaining two Maxwell’s equations (M1) and (M2) become (86) ([P7]): 

(M1+M2)                                F   +  F  +  F   = 0. 

                                                             

83 Recall that index raising (and lowering) is defined through the Minkowski metric   . Now, if you want to raise two 
indices you need to apply it twice: F   =  F 

 . In a more formal language lowering and raising indices is a way to 
construct isomorphisms between covariant and contravariant tensorial spaces. We use the metric tensor because it 
helps to map basis vectors    to dual basis vectors. 
84 Reminder:  :=       ∂ ∂t,  ), where    is the Minkowski metric.   

85 Notice that the vector   
 

 
   ×   has three components:  ∂   ∂t +   ×    ,          . 

86 In contrast to equation (M1+M4) for     which couples to the electrical current density  j  this equation has a zero 

right-hand side. This is a consequence of the incomplete symmetry between electric and magnetic field, arising from 
the nonexistence of magnetic monopoles  ‘magnetic charges’   [B4]). 
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The indices   ν  and ρ can take on any of the four values  0           or  t  x  y    . No matter which 
of these values we assign to   ν  and ρ  the above equation  gives a result of  ero. 

To see this, let us compute the components of the expression on the left side of equation 
(M1+M2).  It follows from the antisymmetry of     that this expression is totally 
antisymmetric in  μνρ   i.e. it changes sign under any exchange of a pair of indices .  

Moreover, for repeating indices the corresponding components are 0. For example  taking  μ  
ν  ρ     0  0  0  or  μ  ν  ρ        0  0  and applying  M  M   we get 

         0   ∂F 00 ∂t   ∂F 00 ∂t   ∂F 00 ∂t   ∂0 ∂t   ∂0 ∂t   ∂0 ∂t = 0,  

         0   ∂F 00 ∂x   ∂F 01 ∂t   ∂F 10 ∂t   ∂0 ∂t   ∂  /∂t   ∂   ∂t = 0. 

Consequently, it is enough to compute the components for the following four assignments of 
indices only: (0, 1, 2), (0, 1, 3), (0, 2, 3) and (1, 2, 3). Applying (M1+M2) we get then the 
following equations 

        0   ∂F 12 ∂t   ∂F 20/∂x   ∂F 01 ∂y    ∂   ∂t   ∂   ∂x   ∂   ∂y  

                  =  ∂   ∂t   (×  )z  

       0   ∂F 13 ∂t   ∂F 30 ∂x   ∂F 01 ∂z   ∂   ∂t   ∂   ∂x   ∂   ∂z  

                  = ∂   ∂t   (×  )y  

       0   ∂F 23 ∂t   ∂F 30 ∂y   ∂F 02 ∂z =  ∂   ∂t   ∂   ∂y   ∂   ∂z  

                  =  ∂   ∂t   (×  )x  

Putting these three equalities together we get (M2): ×       /t.  Now for  μ  ν  ρ        
2, 3) we obtain equation (M1): 

       0   ∂F 23 ∂x   ∂F 31 ∂y   ∂F 12 ∂z    ∂   ∂x   ∂   ∂y   ∂   ∂z    ⋅ . 

The tensor     is called the electromagnetic field tensor (or the field-strength tensor). It 

combines the magnetic and the electric field into a single object. Its source is the electric 4-
current j   see (M3+M4). We will show in the next section that     can be written as   

(4.7)                                  =           

for some 4-vector   =   (x ). The continuity equation (4.2) can be expressed in the following 

form  j  = 0. The field equation (M3+M4)      = j /   then of course automatically 

embodies (4.2). The mathematical reason it does so is that     is a four-dimensional kind of ‘curl’ 

([A1]).  

In three dimensions the transformation properties of the curl ×a are the same as the 
transformation properties of two 3-vectors   the  -vector a and the gradient operator  which 
also behaves like a 3-vector. Our electromagnetic quantity     is a tensor of the second rank in 

four dimensions. It transforms however in a special way which we will see in a moment   it is 
just the way a product of 3-vectors transforms. 

We are going to show that Maxwell’s equations are Lorentz covariant. But since the 
equations are now formulated using the 2-rank tensor      the question is  what does ‘covariant 

tensor’ mean. We already know that a vector with four components is Lorentz covariant if it 
transforms as the position vector. But     is not a vector so we have to clarify the meaning of the 

covariance in this case ([A1]).  

Generally speaking, a physical quantity is said to be Lorentz covariant if it transforms under 
a given representation of the Lorentz group (87). For our purposes, it means that under a Lorentz 

                                                             

87 According to the representation theory of the Lorentz group, Lorentz covariant quantities are built out of scalars, 
four-vectors, four-tensors, and spinors   see [  ] for details. 
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transformation, the components of     will transform into definite linear combinations of 

themselves. And this is easy to show ([F6]). 

Indeed, let us recall the Lorentz transformation formulas (3.5) for two Lorentz frames L and 
L‘  note: c     : 

(4.8)                      t’   (t   x),    x’   (x   t),    y’   y      ’    , 

where   = v and  = 1/      , and consider the general antisymmetric vector combination  

                                         = a b    a b ,  

where a  and b are 4-vectors. Then a  and b transform according to (4.8). Now let us 

transform the components of    . We start with    : 

    
  = a 

 b 
    a 

 b 
  = (a     a )(b     b )  (a     a )(b     b ) = 2[(a b   a b )  

                        2(a b    a b )] = 2(1   2)(a b    a b ) = a b    a b  = c  . 

Let us do one more 

    
  = a 

 b 
    a 

 b 
  = (a     a )b   a  (b     b ) = [(a b   a b )   (a b    a b )] 

        = (c      c  ). 

And in the same way we get  

    
  = (c      c  ),           

  = (c      c  ),    
  = c  ,          

  = (c      c  ). 

Of course,    
        

  and    
  = 0. 

Replacing     by     we infer that the components of     transform into linear combinations 

of themselves. Hence the tensor     is Lorentz covariant. 

We now state a very useful and important fact ([A1]).  uppose we ‘dot’ an upstairs 4-vector 
a  into a covariant second-rank tensor    , via the operation a    , where as always a sum on 

the repeated index μ is understood. Then this quantity transforms as a 4-vector, via its ‘loose’ 
index ν.   n example is provided by the quantity      which enters on the left-hand side of the 

Maxwell’s equations in the form (M3+M4). Since j /   is also a 4-vector we infer that both sides 
of the equation (M3+M4) transform as a 4-vector. Consequently, the equation (M3+M4) is 
Lorentz covariant. In a similar way, we can show that the equation (M1+M2) is also Lorentz 
covariant. It implies that the original Maxwell’s equations (M1)  M(4) are Lorentz covariant 
([A1]). 

Finally, we calculate the following Lorentz invariant from the electromagnetic tensor which 
we will need later when discussing the Lagrangian formalism 

(4.9)                                  
   = 2(B   E  ). 

Mind that     
   is not a matrix being equal to the product of the matrices     and    . It is a 

scalar (reminder: implicit summation on repeated indices) 

                  
   :=       

  
   =      

  
  +      

  
  +      

  
  +      

  
  

= (0     
      

      
 ) + (   

    0     
      

 ) +  

    (   
      

     0 +   
 ) + (   

      
      

  + 0)  

= 2(  
  +   

  +   
 )   2(  

  +   
  +   

 )  

= 2(B   E  ). 
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4.4. Gauge invariance of Maxwell’s equations 

In classical electromagnetism, and especially in quantum mechanics, it is convenient to 
introduce the electromagnetic 4-vector potential   (x) in place of the fields   and   (88).  

We have already remarked that Maxwell’s equations (M1) and (M2) are known as Bianchi 
identities. They are not field equations, since there are no sources; rather, they impose 
constraints on the electric and magnetic fields. We want to write them in terms of the 
potential    ([F3]). 

We begin with (M1), i.e.   = 0   the simplest of the equations. It is known that if the 
divergence a of a 3-vector a is 0 then it implies that a is the curl of something (89). So, if we 
write 

(4.10)                                       = × , 

which defines the magnetic 3-vector potential   =  (t,  ), we have already solved one of 
Maxwell’s equations (90):    = (× ) = 0.  

We take next the equation (M2), ×     ∂  ∂t. If we write   as ×  and differentiate with 
respect to t  we can write Faraday’s law  M   in the form ×     ∂ ∂t (× ). Hence ×  = 
 × ∂  ∂t) and consequently ×(  + ∂  ∂t) = 0. We see that     ∂  ∂t is a 3-vector whose 
curl is equal to zero. Therefore that vector is the gradient of something:  

                                                                      ∂  ∂t     , 

which defines the electric scalar potential   =  (t,  ) (the minus for technical convenience). So 
the equation (M2) can be put in the form 

(4.11)                                                           ∂  ∂t   . 

We have solved two of Maxwell’s equations already  and we have found that to describe the 
electromagnetic fields   and  , we need four potential functions: a scalar potential   and a 3-
vector potential  , which is, of course, three functions   = (  ,   ,   ).  

A magnetic field exerts a force on a current, and a current density   has interaction energy 
given by    · . This is an important formula that establishes the coupling of charged particles to 
the magnetic field through the vector potential. As will be shown below,   is, in fact, the spatial 
component of the ‘gauge field’   , a concept which forms the primary focus of this paper. 

The origin of gauge invariance in classical electromagnetism lies in the fact that the 
potentials   and   are not unique for given physical fields   and  . The transformations that   
and   may undergo while preserving   and   (and hence Maxwell’s equations) unchanged are 
called gauge transformations, and the associated invariance of Maxwell’s equations is called 
gauge invariance. 

What are these transformations? Clearly,   can be changed by 

(4.12)                                                            =   +, 

where  = (t,  ) is an arbitrary (91) scalar (real) function of position and time, with no change 
in   since ×f = 0, for any scalar function f with continuous mixed partial derivatives (92). To 
preserve  ,   must then change simultaneously by 

                                                             

88 The introduction of the electromagnetic potential     is motivated by the fact that two observers do not necessarily 

agree whether or not there is a non-zero magnetic field present in the system. In order to develop a consistent 
description that is valid for all observers, the electric and magnetic field components must be allowed to get mixed 
through coordinate transformations. The first step to do this is to introduce the 4-vector    which combines the 

electric and magnetic potentials into a single object ([S2]). This is exactly this 4-vector which we announced in (4.7).  

89 This is so called Poincaré Lemma for anti-curl. 

90 Reminder: the divergence of a curl ⋅(× ) is always zero - see Section 4.2. 
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(4.13)                                                            =     ∂ ∂t. 

Then neither   nor   obtained from (4.10) and (4.11) is changed.  

To summarise, if a given set of electric and magnetic fields   and   is described by a scalar 
potential   and 3-vector potential   according to (4.10) and (4.11), then the identical physical 
situation (i.e. identical electric and magnetic fields) is equally well described by a new pair of 
scalar and 3-vector potentials, related to the original pair by the gauge transformations given in 
(4.12) and (4.13), where  is an arbitrary function of position and time. 

What is this gauge invariance (i.e. gauge symmetry) good for? We can in fact use the gauge 
invariance to our advantage, by making a convenient and simplifying gauge choice for the scalar 
and 3-vector potentials. We have one arbitrary function (i.e. (t,  )) at our disposal, and so this 
allows us to impose one functional relation on the potentials   and  . For our purposes, the 
most useful gauge choice is to use this freedom to impose the Lorenz gauge condition (93) 

(4.14)                                                                ∂  ∂t. (94) 

Substituting (4.10) and (4.11) into Maxwell’s field equations (M3) and (M4), and using the 
Lorenz gauge (4.14), we get (95) 

(4.15)                                 ∂   ∂      /    and       ∂    ∂   =   /  . 

These equations can be combined into a single compact equation by introducing the potential  
   := ( ,    and using the d’ lembertian  4.4):  

(4.16)                                                                   = j /  . 

The wave operator    :=  
  is manifestly a Lorentz operator, since it is built from the 

contraction of indices on the two gradient operators. Since we have already established that j  is 

a 4-vector, (4.16) therefore implies that    is a 4-vector. It is called the 4-vector potential (or 4-
potential  for short). The ambiguity of    up to a gauge transformation has led to the term gauge 
field. Equation (4.16) states that the current density j  is the source of the gauge field   , and the 

field can propagate as a travelling wave with constant velocity c ([H13]). 

The interaction energy density between matter and the electromagnetic field is the sum of 
electric and magnetic contributions, given by ρ     · . This can be expressed in the Lorentz 
invariant form: j    ([H13]). 

Note that the Lorenz gauge condition (4.14) translates in the four-dimensional language into 

 (4.17)                                                                   = 0, 

which says that the divergence of the 4-potential    is zero (96).  

The energy of a relativistic charged particle moving in an electromagnetic field is given by  

                                                                 +   , 

                                                                                                                                                                                              

91 More precisely,   is usually assumed to be smooth, i.e. infinitely differentiable scalar function. 

92 By the Clairaut’s theorem on equality of mixed partials ([W11]),  × f  = (


 

 

 
  



 
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 
 ,  


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

 

 

 
 ,  



 

 
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  


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 
) = 

(

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  


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 

 
 ,  


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  



 

 

 
 ,  



 

 

 
  



 

 

 
) = (0, 0, 0) = 0. 

93 Choosing the    is called choosing a gauge.  Equation (4.14) is called the Lorenz gauge. 
Note that, contrary to the belief of many physicists, this gauge choice was introduced by the Danish physicist Ludvig 
Lorenz (1829 – 1891), and not the Dutch physicist Hendrik Lorentz (1853 – 1928) who is responsible for the Lorentz 
transformation. Adding to the confusion is that unlike many other gauge choices that one encounters, the Lorenz 
gauge is, as we shall see later, Lorentz invariant ([P7]). 

94 The function Λ is to be chosen to satisfy the equation 2    ∂2 ∂t2 =       ∂  ∂t. 

95 Reminder:    := ( )  ×(× )  see Section 4.1. 

96 Equation (4.17) indicates that the gauge field    itself does not have a charge. 
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Indeed,  

   
  =     

       
  =   (      )           )  

              =                     =           =    . 

where   is the momentum 3-vector (reminder: c = 1). The preceding equation can be written as 

                                                                   . 

Comparing this to the energy of a free particle          we infer that the electromagnetic 

coupling appears through replacements         and        . But since p  = ( ,  ) and 

   = ( ,  ) it means the following 4-vector replacement ([H13]) 

(4.18)                                                          p   p     . 

In the quantum form of the theory, this replacement corresponds to the substitution of the 
derivative   by the covariant derivative    (see Section 5.2). 

Now let us note that our definition (4.5) is consistent with    := ( ,  ) i.e., the 4-potential 

   fulfils the equation (4.7):     =          . 

Indeed, put     :=          . Then  

  =       = 0 
    =           =  (         ) =      

Applying (4.11) we obtain 
    =           = ∂   ∂t   ∂   ∂x   ∂   ∂t   ∂  ∂x       =     
    =           = ∂   ∂t   ∂   ∂y   ∂   ∂t   ∂  ∂y       =     

    =           = ∂   ∂t   ∂   ∂y   ∂   ∂t   ∂  ∂        =     
Now by (4.10) we get 

    =           =  ∂   ∂x   ∂   ∂y    (× )z =     =     

    =           =  ∂   ∂x   ∂   ∂    (× )y =    =     

    =           =  ∂   ∂y   ∂   ∂     (× )x =     =     

Consequently     =     =          . 

The final step is to note that the gauge transformations (4.12) and (4.13) can be written in 
the form (97): 

(4.19)                                                             
  =       .        

Under the gauge transformation (4.19) the electromagnetic tensor     remains unchanged (98) 

                                                                                   
  =    . 

It means that     is gauge invariant and so, therefore, are Maxwell’s field equations in the form 

(M3+M4).  

Consequently, (4. 6  describes the ‘Lorent -covariant and gauge-invariant field equations’ 
satisfied by   . (99) 

                                                             

97 Notice that the gauge transformation (4.19) does not act on spacetime but on the field space. It is thus an internal 
symmetry in the terminology of Section 3.5. 

98 It implies that the 4-vector potential    is itself not physically observable since    and   
  give rise to the same 

electromagnetic field    . 

99 From a mathematical point of view the electromagnetic potential    is a connection on the field space dictating how 

vector fields are going to displace when they move along specific paths along the base manifold  . Gauge invariance 
allows for the establishment of a principal vector bundle structure, with different connections, that is, electromagnetic 
potentials, over each open set of the covering of the base space. In the overlapping zones of two open sets the 
respective connections must only differ by a gauge transformation  . This condition ensures that parallel transport 

develops smoothly as any path is traversed along the base manifold ([C3]). 
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Notice that  in the gauge transformation (4.13) is not constant but an arbitrary function of 
position and time. Changing the value of the electrostatic potential   by a constant amount is an 
example of what we have called a global transformation in Section 3.5 (since the change in the 
potential is the same everywhere). Invariance under this global transformation is related to a 
conservation law: that of electric charge.  

But this global invariance is not sufficient to generate the full Maxwellian dynamics. 
However, one can regard equations (4.12) and (4.13) as expressing the fact that the local change 
in the electrostatic potential    the ∂ ∂t term in (4.13)) can be compensated – in the sense of 
leaving Maxwell’s equations unchanged – by a corresponding local change (4.12) in the magnetic 
vector potential  . Thus by including magnetic effects, the global invariance under a change of   
by a constant can be extended to a local invariance (4.19)  which is a much more restrictive 
condition to satisfy ([A1]). 

If a 4-vector potential    is postulated, and it is then demanded that the theory involve it 

only in a way that is insensitive to local changes of the form (4.19), one is led naturally to the 
idea that the physical fields enter only via the quantity    , which is invariant under (4.19). 

The idea that dynamics (in this case, the complete interconnection of electric and magnetic 
effects) may be intimately related to a local invariance requirement (in this case, 
electromagnetic gauge invariance) turns out to be a fruitful one. It is generally the case that, 
when a certain global invariance is generalized to a local one, the existence of a new 
‘compensating’ field is entailed  interacting in a specified way. The first example of dynamical 
theory ‘derived’ from a local invariance requirement seems to be the theory of Yang and Mills  as 
we shall see in detail in Chapter 6 ([A1]).  

The electromagnetic gauge invariance (4.19) is in the quantum form of the theory directly 
related to an invariance under local phase transformations. It means that the gauge 
transformation (4.19) corresponds to a unitary operator that transforms the wave function of a 
particle in an electromagnetic field ([A1]).  

A full understanding of gauge invariance in electrodynamics can only be reached via the 
formalism of quantum field theory, which is not easy to master. Nevertheless, many of the 
crucial ideas can be discussed within the more familiar framework of ordinary quantum 
mechanics, rather than quantum field theory, treating electromagnetism as a purely classical 
field ([A1]) (100). Thus in order to proceed further, the next thing that we have to discuss is how 
such (gauge) ideas are incorporated into (ordinary) quantum mechanics.  

But before we continue, let us explain why actually the term ‘gauge’ is used. 

4.5. What is ‘gauge’ in a gauge theory? 

The history of gauge theories begins with general relativity (GR), which can be regarded as a 
(non-Abelian) gauge theory of a special type. To a large extent, the other gauge theories emerged 
in a slow and complicated process gradually from GR ([S15]). 

It all began with H. Weyl [W5], who made in 1918 the first attempt to extend general 
relativity (GR) in order to describe gravitation and electromagnetism within a unifying 
geometrical framework. This brilliant proposal contains the germs of all mathematical aspects of 
non-Abelian gauge theory. The word ‘gauge’ (German: ‘Eich-‘) transformation appeared for the 
first time in this paper but in the everyday meaning of a change of length or change of calibration 
(like the ‘gauge’ of railway tracks) (101). 

                                                             

100 In this paper I discuss Yang-Mills theory up to the point of its quantisation. It is, of course, quantisation which lends 
physical significance the theory. But it opens a can of mathematical worms which have no place in this layman’s 
exposition. 

101 The German word eichen  probably comes from the Latin aequare, i.e., equalizing the length to a standard one 
([O3]). 
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In Euclidean geometry, the length and direction of a vector are invariant with respect to a 
translation. In Riemann's geometry, however, only the length remains unchanged. Weyl 
wondered why it is so. Ultimately, the measuring devices have to be transported from one point 
in spacetime to another in order to measure the length (and time) there. According to Weyl, 
therefore, one can only measure the relative lengths of two vectors. The absolute length of a 
vector, however, is arbitrary. 

To describe this mathematically, Weyl modified the Einstein spacetime metric g   as follows: 

                                                            : g    g 
  = g  ,  

where the ‘conformal factor’  = (t, x) is any positive and smooth (102) function on spacetime. 
Weyl found out that general relativity is invariant with regard to this transformation, i.e. the 
‘gauge’  can be chosen as an arbitrary function. He called the transformation    ‘gauge 
transformation’ (of the length). 

In other words, in addition to the requirement of the invariance of the physical laws against 
arbitrary coordinate transformations (according to general relativity), Weyl also put the 
invariance with regard to this ‘gauge transformation’ on an equal footing and described this as 
the principle of gauge invariance. 

One can show that there is a 4-vector field 
 

 on spacetime, such that the transformation    

corresponds to the following  ‘gauge’) transformation:  

                                                          
 

  
 

  1/ .   

Since  is arbitrary, we can set  =  e , where  = (t,  ) is a (smooth) function on spacetime. 
The transformation g    g   then looks like this: 

 
  

 
    , i.e. it looks exactly like the 

transformation (4.19) of the electromagnetic potential field           .        

Weyl then postulated that there is only one vector field 
 

 having physical meaning, namely 


 

 = e/  , where e is the elementary charge (and  an indefinite constant). This enabled Weyl 

to unify gravitation and electromagnetism, assuming that the ‘gauge’ can be arbitrarily chosen 
locally at points of spacetime. 

In this way, Weyl replaced Riemann's geometry with another one, which is now called 
Weyl's geometry. If in this geometry, a vector with length LP is transported from a point P in 
spacetime to a point Q in parallel, its length LQ in Q is dependent on the path K and the 
(electromagnetic) potential field   :  

                                                              LQ = LP exp(e/    
 

 
). 

The further history of the Weyl theory is well known: Einstein immediately raised an 
objection to it (although the mathematics of the theory impressed him very much). He argued 
that according to the ‘Weyl’s gauge invariance’, the size (or the rate speed) of a watch would 
change when the watch moves through an electromagnetic field. This would mean that two 
synchronized clocks would no longer be synchronized after moving in the electromagnetic field, 
which contradicts known observations. 

Einstein: "... As nice as your thought is, I have to say frankly that in my opinion it is 
impossible that the theory corresponds to nature". (103) ([P9]) 

                                                             

102 A smooth function is a function that has continuous derivatives up to some desired order. The number of 
continuous derivatives necessary for a function to be considered smooth depends on the problem at hand, and may 
vary from two to infinity. 

103 „… So schön Ihr Gedanke ist, muss ich doch offen sagen, dass es nach meiner Ansicht ausgeschlossen ist, dass die 
Theorie der Natur entspricht“. 
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This led to an intense exchange of letters between Einstein (in Berlin) and Weyl (at the ETH 
in Zürich). No agreement was reached, but Einstein's intuition proved to be right. After a long 
discussion, Weyl finally admitted that his attempt was a failure as a physical theory (104) ([O3], 
[S13]).  

Although Weyl's attempt was a failure as a physical theory, it paved the way for the correct 
understanding of gauge invariance which plays a very important role in modern physics. But 
that had to wait for quantum mechanics to come. Weyl himself reinterpreted in 1929 his original 
theory after the advent of quantum theory in a seminal paper [W7], this time relating 
electromagnetism not to gravity but to the wave-field of the electron (105). The role of the metric 
is taken over by the wave function, and the rescaling of the metric was replaced by a phase 
change of the wave function. Weyl’s reinterpretation of his earlier speculative proposal had 
actually been suggested before by F. London (1927), V. Fock (1926), O. Klein (1926), and others 
([S15]).  

Today, so-called gauge theories have nothing to do with geometrical objects like g  ; instead, 

they involve local phase changes in quantum fields, i.e.             (106), which are 
                                                             

104 In his encyclopaedia article on relativity [P2] Wolfgang Pauli commented on Weyl’s point of view  [  4] : “... In 
summary one may say that Weyl’s theory has not yet contributed to getting closer to the solution of the problem of 
matter.” 
105 Before its release, Weyl published a short summary to which Pauli  upset by the mathematician’s intrusion into 
physics  replied: “... I admire your courage; since the conclusion is inevitable that you wish to be judged, not for your 
success in pure mathematics, but for your true but unhappy love for physics.” However  after reading the whole article 
[W7] Pauli became more friendly and wrote ([S14] :  “... Here I must admit your ability in Physics. Your earlier theory 
with  g  was pure mathematics and unphysical. Einstein was justified in criticizing and scolding. Now the hour of your 
revenge has arrived.“ 
106 Notice that          is a complex number. Recall that a complex number is a number of the form z = x + iy, where x 
and y are real numbers, and i is a symbol called the imaginary unit, and satisfying the equation i2     . The absolute 

value of z (or modulus or magnitude) is r = |z| :=       . The magnitude of a complex number  z = x + iy is 
obviously  the Euclidean distance from the origin in the complex plane to the point (x, y). The complex conjugate of 
the complex number     x   iy is given by x   iy. It is denoted by either    or z*.  Clearly zz* =        = |z|2 = |z*|2.  
The angle  or phase  (or argument) of the complex number x + iy is the angle, measured in radians, from the point  
1 + i0 to x + iy, with counter clockwise denoting positive angle.   
We can express the complex number z = x + iy in terms of the complex exponential  as z = r   , where r = |z|. It is 
called the exponential  or polar  of the complex number    since  r     are the polar coordinates of the point with 
rectangular coordinates (x, y)). Recovering the original rectangular coordinates from the polar form is done by the 
formula called trigonometric form z = r(cos  + isin ). The set of all complex numbers is denoted by   ([W11]). 
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fundamental in the description of the electroweak and strong interactions in the Standard 
Model. The notion of gauge symmetry is used for historic reasons and does not make much sense 
for the type of symmetry we are considering here. 

5. Gauge invariance in quantum mechanics (QM) 

In the present chapter (107) we shall discuss gauge invariance in electrodynamics within the 
framework of ordinary quantum mechanics, rather than quantum field theory, treating 
electromagnetism as a purely classical field. We will see that in the quantum form of the theory 
the gauge invariance of Maxwell’s equations is directly related to invariance under local phase 
transformations of the (complex-valued) wave function  of a particle with the charge  . 

We begin with non-relativistic quantum mechanics and then we shall explore the 
generalization to relativistic quantum mechanics, for particles of spin-0 (via the Klein–Gordon 
equation) and spin-½ (via the Dirac equation) ([A1]). 

5.1. An interlude on Lagrangian formalism 

The majority of contemporary field theories, including the quantum fields of the Standard Model 
of particle physics, are derived from an action principle, a fundamental concept in theoretical 
physics. In essence, the action principle posits that a system is defined by an expression, termed 
the Lagrangian, an equation that captures the presumed kinetic and potential energies of the 
system in a specific form. The system's evolution from an initial to a final state is such that the 
integral of this Lagrangian, known as the action, is minimised. From the Lagrangian, the 
principle of least action allows the derivation of other equations, including the equations of 
motion or field equations of the system. 

This formalism is a formulation of classical mechanics, wherein the dynamics of the system 
under consideration is described by a single scalar function, the Lagrangian density. All field 
theories can be described with mathematical formulas of the Lagrangian densities. The 
Lagrangian density is thus the fundamental quantity of a field theory. 

The Lagrangian formulation of classical field (or particle) physics is a powerful approach due 
to its ability to efficiently incorporate symmetries and demonstrate their connection with 
conservation laws (108). This is also the case in the context of quantum field theory (QFT). A QFT 
is defined in terms of its Lagrangian, which in turn defines the fields and their interactions. 

Thus for the understanding of a field theory (like e.g. electrodynamics) the Lagrange (109) 
formalism is of central importance. It provides a unified framework for the mechanics of both 
fields and particles, encompassing both classical and quantum aspects. It is noteworthy that this 
framework was developed prior to the advent of quantum field theory. This was in the form of 
the principle of least action (110), with the action defined in terms of a Lagrangian ([A1]) (111).  

The Lagrangian density   is a (real) function of all fields 
 
 of the theory and their 

derivatives  
: 

                                                             

107 Many fragments of this and the next two chapters are borrowed from the book [A1] that I highly recommend to the 
reader for further reading. [A1] and [S2] are the clearest introductory books I have found. 

108 Any symmetry (both internal and external) of the Lagrangian leads to a conservation law: e.g., spatial translation 
symmetry leads to momentum conservation, whereas symmetry under spatial rotations leads to the conservation of 
angular momentum. 

109 Joseph-Louis de Lagrange (1736 - 1913), also reported as Giuseppe Luigi Lagrange or Lagrangia was an Italian 
mathematician and astronomer, later naturalised French. 

110 The principle of least action had been proposed in various forms by Pierre Fermat (1601–1665) and Pierre-Louis 
Moreau de Maupertuis (1698–1759). It was later developed and formalized by Leonhard Euler (1707–1783) and 
Lagrange. 

111 The reader is referred to a great exposition of the topic in [F4]. 
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    =  (t, 
 
,  

). 

The explicit form of the Lagrangian density depends on the field theory under consideration. The 
spatial volume integral of the Lagrangian density   is called the Lagrangian (112) 

      L :=       

The time integral of the Lagrangian is called the action denoted by S 

S  :=      =    t 
 
  

     . 

The action is often referred to as the action functional, in that it is a function of the fields (and 
their derivatives). 

Now we postulate the fundamental Hamilton’s principle of least action 

(5.1)                              δS = 0, 

where δS is the variation of S, meaning that the dynamics of the fields is governed by minimizing 
(113) the action S. This principle leads to the Euler-Lagrange equations of field theory. These 
equations form a system of ordinary differential equations (second order with respect to the 
time derivative) that uniquely determine the behaviour of the fields. The number of differential 
equations depends on the number of degrees of freedom. 

Let us explain it in more detail. As a rule, the Lagrangian is a function of the position and 
velocity along the trajectory of a system. In simple situations (in classical mechanics) the 
Lagrangian is just the difference   =   –  , where   = kinetic energy of the system and   = 
potential energy of the system. Yes, there is a minus sign in the definition (a plus sign would 
simply give the total energy, i.e. the Hamiltonian). The kinetic energy   is usually a function of 
the velocities, while the potential energy    is a function of the positions. 

Suppose we have a single (classical) particle with mass   (in a gravitational field, for 
instance) which starts somewhere and moves to some other point by free motion. In the 
Newtonian approach, the trajectories of the particle are calculated using equations of motion 
which involve forces as the physical input. In the least action approach, the path by which a 
particle actually travels is determined by the principle that it has to follow that particular path, 
out of infinitely many possible ones, for which the variation of the action S  vanishes (i.e. δS = 0) 
(114).  

For a single particle in a potential   the Lagrangian   is given by 

  =  (             = 
 

 
            

where      is the position of the particle as a function of time,       is its velocity, i.e.       = 
  

  
 . 

Thus the action S  is given by 

     =       ) =     
  
  

    
 

 
 
  

  
 
 
       

  
  

dt. 

Since S is an explicit function of the variables   and   , so knowing  (x) we can evaluate S  for all 
sorts of possible     ’s starting at time    and ending at time   . We can draw these different 
possible trajectories on a   versus t diagram as in the following figure 

                                                             

112 It is a customary abuse of language in quantum theory to refer to the ‘Lagrangian density’ as the ‘Lagrangian’. 

113 We say least or minimum, but what is really meant is stationary  i.e. maximum or minimum. δS = 0 basically means 
that a slight variation (differential) in the action should be zero. For this reason purists prefer the name principle of 
stationary action. ([H13]) 

114 Now, the reader may wonder why exactly should physical systems obey this principle.  Why should an object take 
the path of stationary action instead of some other path?  Fundamentally, nobody actually knows the real answer to 
this. 
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For each path we evaluate  : the actual path is the one for which S  is smallest, by the principle of 
least action (5.1). Of course, the path       that has the minimum action is in this case the one 
satisfying Newton’s second law. It can be obtained analytically by solving the Euler-Lagrange 
equation of motion 

                                                                 
  

  
  

 

  

  

   
 = 0. 

Indeed, the Euler-Lagrange equation amounts in our case to 

                                                                                      
     

  
, 

where    = 
   

   . But        is the force   on the particle. So we see that the Euler-Lagrange 

equation says exactly the same thing as Newton’s second law:   =   , where   =   . 

In a field theory with a Lagrangian density  (t, 
 
,   

) the Euler-Lagrange equation has the 

form (115) 

                                                                          
  

  

    
  

    
 
  = 0. 

The Euler-Lagrange equation can be used for any given Lagrangian density   to derive the 
corresponding equation of motion (116). Solutions of this equation of motion correctly describe 
how a system evolves. 

As we already know, a relativistic field theory must be covariant under the Lorentz 
transformations. Therefore, the action (i.e. also the Lagrangian density) must also satisfy the 
Lorentz invariance. The Lagrangian density (or at least the action) of a gauge theory should 
additionally be invariant under the gauge transformation.  

The Lagrangian density, called kinetic term, for the free (i.e. non-interacting) 
electromagnetic field is (cf. (4.9)) 

   
     :=   

   
     

   =  
 

   
 (B   E  ), 

where    is the permeability of free space, a physical constant connected to the energy stored in 
a magnetic field (117). The interaction between the charged particle (or in general any charged 
body) with some charge density j  and an electromagnetic field is given by the Lagrangian 

density called interaction term  

                                                             

115 More precisely, we get one equation for each field component  . 

116 The reader may ask where to get a Lagrangian density from. In general, the answer is the same as in classical 
physics: derive it from experiment, guess, borrow it from some theory that you like, or just pick one and see what it 
does. ([S17]) 

117 It is related to the speed of light by the equation c =  
     

 . Recall that    is the electric constant. 
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    :=  j   . (118) 

This term describes interaction potential energy. All together, the Lagrangian density of a 
charged particle and an electromagnetic field is (119): 

(5.2)                                                  
  :=    

     +    
    =   

   
     

     j   . 

It is immediate that    
  is Lorentz invariant (see Section 4.3). But is it gauge invariant? At 

first sight, this Lagrangian density is not gauge invariant, because   
         implies  

                                                                   j   
  = j      j    j   .  

However the extra term j   can be transformed using the continuity equation (4.2) into the 

divergence  j
  which can be discarded if the function  fulfils reasonable boundary 

conditions (120). The Euler-Lagrange equations corresponding to the Lagrangian density    
  

become Maxwell’s field equations. 

We close this section with the following remark. In the example above, we considered 
(infinitely) many possible paths      , of which only one was the actual path followed by a 
(classical) particle, namely the one we called       which minimized the action integral as a 
functional of     . In the quantum case, however, a particle will no longer follow any definite 
path, because of quantum fluctuations. In the original formulations of quantum theory, such 
fluctuations were generally taken to imply that the very notion of a ‘path’ was no longer a useful 
one. Fortunately, a quantum generali ation of the ‘path-contribution to the action’ approach to 
classical mechanics was subsequently developed. The idea was first hinted at in 1933 by Dirac, 
but it was Feynman who worked it out completely (121). ([A1]) 

Instead of throwing away the whole idea of a path  Feynman’s insight was to consider the 
‘opposite’ viewpoint: since unique paths are forbidden in quantum theory  we should in 
principle include all possible paths. However, surely not all paths are equally likely: after all, we 
must recover the classical trajectory as a limit. Thus we must find an appropriate weighting for 
the paths. Feynman’s recipe is beautifully simple: the contribution of a path is proportional to 

     , where S is the action for that particular path. In summary, the quantum mechanical 
amplitude to go from       to       is proportional to 

     i                 
  
  

               . 

                                                             

118 Reminder: j :=   j    ρ    ), where    is the Minkowski metric and j is the electromagnetic 4-current density.  

119 We ignore kinetic energy  
 

 
 v v

  of the particle with mass   in this Lagrangian density. 

120 It means that we restrict to gauge transformation or to currents that vanish sufficiently fast at infinity. 

121 Dirac's work did not provide a precise prescription to calculate the sum over paths, and he did not show that one 
could recover the Schrödinger equation or the canonical commutation relations from this rule. This was done by 
Feynman. That is, the classical path arises naturally in the classical limit. 
In his paper  Dirac had cryptically remarked that a critical quantum quantity is ‘analogous’ to its classical counterpart  
but Feynman believed that the correct phrase was ‘proportional to’.  In September 1946, at a conference in Princeton, 
Feynman had an opportunity to find out what Dirac had meant. He described his problem to Dirac and came to the 
crunch: 

Feynman: Did you know that they were proportional? 
Dirac: Are they? 
Feynman: Yes they are. 
Dirac: That’s interesting. 
After a silence Dirac walked away. ([F1]) 

Niels Bohr described Dirac as “the strangest man”. His extreme reticence  monosyllabic responses and repetitious 
statements are legendary. It has been said in jest that Dirac’s  spoken vocabulary consisted of  "Yes", "No", and "I don't 
know". 
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We shall not, however  make use of the ‘path integral’ approach to quantum field theory in this 
paper. Its use was, in fact, crucial in obtaining the Feynman rules for non-Abelian gauge theories; 
and it is the only approach suitable for numerical studies of quantum field theories ([A1]). 

5.2. The Schrödinger equation 

Maxwell’s equations represent a classical and not a quantum mechanical description of 
electromagnetic waves. In contrast, the Schrödinger equation in quantum mechanics is a wave 
equation for quantum mechanical particles.  

The Schrödinger equation was formulated in 1926 by the Austrian physicist Erwin 
Schrödinger (1887–1961) as a wave equation and is the fundamental equation of quantum 
mechanics (122). In the form of a partial differential equation, it describes the development of a 
quantum state over time in a non-relativistic quantum mechanical system, say a bunch of 
particles subject to certain forces (123).  

In this framework, the scalar (complex-valued) field (t,  )  (t,  )    (124) of a non-
relativistic spin-0 particle with mass   under the influence of a potential  (t,  ) is determined 
by the (time-dependent) Schrödinger equation (reminder:   = 1): 

(5.3)                        i
 

  
 = [  

 

  
  +  (t,  )]. 

The starting point for Schrödinger was the classical Hamiltonian (which corresponds to the total 
energy   =   +  ) for a particle of mass  , which moves with momentum    in a potential   
(125) 

  = 
  

  
 +  (t,  ). 

Multiplying both sides by  we get 

            = [
  

  
 +  (t,  )]. 

Schrödinger replaced then the (classical) quantities energy  , momentum   and position   with 
the following quantum operators:  

                                                  i /t,          i ,            (126) 

and obtained    

                                                             

122 “Schrödinger's revolutionary work on the wave mechanics version of quantum mechanics came together in the 
last weeks of December 1925. He was staying in an inn up in the mountains at Arosa with a girlfriend from Vienna, 
one whose identity remains a mystery to this day. He was working on what was to become known as the ‘ chrödinger 
equation’.  …  When he got back to Zürich, he consulted [his closest friend] Weyl, who was an expert on this kind of 
equation, and explained to him what the general properties of its solutions were. In his first paper on quantum 
mechanics, Schrödinger explicitly thanks Weyl for his help. (...) 
Weyl later commented on this period by remarking that  chrödinger ‘did his great work during a late erotic outburst 
in his life’.  chrödinger was married  but was ‘convinced that Bourgeois marriage  while essential for a comfortable 
life  is incompatible with romantic love’. His wife   nnemarie  presumably was not too concerned about his spending 
time in the mountains with his girlfriend  since she was Weyl's lover at the time.”  ([W13]). 

123 The equation has now been confirmed by countless experiments. However, it is only applicable for certain 
situations, e.g. if one can ignore the spin of vector particles. 

124 The position-space wave function  for N particles is of the form (t,  1, ...,  N), where  i is the position of the  th 
particle in three-dimensional space, and t is time. Altogether, this is a complex-valued function of 3N+1 real variables, 
i.e.  is defined on the 3N+1 dimensional configuration space. 

125 Physically, the quantity 
  

  
 represents kinetic energy, while  (t,  ) represents potential energy. Notice that given 

the Lagrangian for a system, one can construct the Hamiltonian and vice versa: the Lagrangian is just the Legendre 
transform of the Hamiltonian. 

126 The reader may well wonder why this  replacement is used. We shall postpone the discussion of this question to 
Section 5.9. 
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                                                               i 
 

  
 = [

      

  
 +  (t,  )], 

which is exactly equation (5.3) since we assume   = 1. These operators act now on an unknown  
wave function . This procedure is called the first quantisation (or canonical quantisation) (127). 
Note that for historical reasons, the energy operator on the right-hand side of the Schrödinger 
equation is known as the Hamiltonian operator  (cf. Section 5.9) 

                                                            := [
      

  
 +  (t,  )]. 

Therefore, in terms of the Hamiltonian operator, the Schrödinger equation reads:     

(5.3’)                                                       i 
 

  
 =   . 

After postulating equation (5.3) there was a great deal of discussion on what the wave 
function actually meant. A solution to the Schrödinger equation is the (quantum) wave function 
 = (t,  ). But how is this solution to be interpreted physically? Schrödinger himself gave the 
first interpretation based on classical physics. The wave optics links the intensity of a wave with 
the square of the amplitudes. The question therefore arose whether the quantity ||2 = * (128) 
could also be assigned to a measurable property of the quantum object whose state  described. 
However, this interpretation of the wave function led to contradictions with experiments that 
showed that the wave function cannot be understood as a field function in the classical sense. 

After much debate, the wave function is now accepted to be a probability distribution 
(density) (129). According to this statistical interpretation of quantum mechanics proposed by 
Max Born (130) in 1926, the (squared) absolute value |(t,  )|2 corresponds to the probability 
that the particle will be found in the position x = (t,  ) (131). To do this, however, the wave 
function must be normalised in such a way that the total probability is one:  

                                                                     
 

      = 1.  

In particular, the probability integral must be time independent. This statistical interpretation 
takes into account the fact that the experimental results are mean values over many individual 
events. 

The Schrodinger equation is used to find the allowed energy levels of quantum mechanical 
systems (such as atoms). The associated wave function gives the probability of finding the 
particle at a certain position.  

In general, the wave function does not describe a physical wave because it is not a function 
defined on physical space. Rather, it is defined on configuration space  it takes as input all the  

                                                             

127 The term first quantisation refers to its relationship to the second quantisation (= field quantisation). Historically, 
it was not the first attempt of quantisation in modern physics. 

128 The complex conjugate   of  is defined by (t,  )   (t,  ) :=   t     . Recall that every complex number z = x 

+ iy (where i  = 1) has associated with it the complex conjugate z* := x – iy. Thus the product z   =     = x2 + y2 is 

equal to the squared magnitude of z: |z| =        .  

129 More accurately, wave function is not probability itself; it is probability amplitude. This means, you have to take its 
absolute square in order to get a probability. So just remember: probabilities are real numbers between 0 and 1 (or 
between 0 and 100%), while amplitudes are complex numbers. 

130 Max Born (1882-1970) was a German physicist and mathematician. He won the 1954 Nobel Prize in Physics. 

131 To be more precise, in the context of quantum field theory (QFT), the concept of particles is rendered obsolete, as 
the theory posits the existence of fields alone. Within the framework of QFT, interactions, including creation and 
destruction, occur at specific locations x. However, the fundamental objects of the theory, namely the fields, are said to 
lack positions due to their infinitely extended nature. Rigorous analysis demonstrates that, even under the broadest 
definition of "particle," particles are incompatible with the combined principles of relativity and quantum physics. 
This analysis further demonstrates that photons, in particular, cannot be considered point particles; relativistic and 
quantum principles imply that a photon cannot be "located" at a specific point, even in principle. ([H7]) 
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possible configurations of locations the particles could be in and it returns a value related to the 
probability that you will find the particles in the given configuration at the given time (132). 

Another aspect of the Schrödinger equation is its linearity. Unlike the classical equations, 
which are nonlinear, the Schrödinger equation is linear. This linearity gives quantum mechanics 
some of its uniquely non-classical characteristics, such as the superposition of states ([Z6]). This 
means that if some wave function 

 
 is a solution and some other wave function 

 
 is also a 

solution, then the sum  = 
 

 + 
 

 is a solution too. But 
 

 and 
 

 could correspond to quite 

different situations, for example 
 

 might correspond to the particle being in a laboratory A and 


 

 might correspond to the particle being in a distant laboratory B. Since the sum 
 

 + 
 

 is 

also a solution, there is a sense in which the same particle is in both places at once. When this 
happens we say that the particle is in superposition of the two states 

 
 and 

 
. (133) 

We now look more closely into the relationship between the gauge invariance of Maxwell’s 
equations and invariance under local phase transformations in quantum mechanics. 

First let us notice that the free-particle Schrödinger equation (i.e. for  (t,  ) = 0) amounts to 

(5.4)                           i/t =   
 

  
 . 

The Schrödinger equation for a spin-0 particle of charge   (e.g. charged pion +) in an 
electromagnetic field is 

(5.5)                i/t = [
 

  
  i        +    ], 

where   is the magnetic 3-potential and   the electric scalar potential (Section 4.4).  We can 
write (5.5) as 

(5.6)                        i(/t + i  ) =  
 

  
    i    . 

Note the appearance of the operator combinations 

(5.7)                                             := /t + i     and    :=    i   

in place of /t and , in going from the free-particle Schrödinger equation (5.4) to the 
electromagnetic field case (5.6). We note that (5.7) can be written in manifestly Lorentz 
invariant form as (134) 

(5.8)                        := (  ,   ) =   + i   . 

                                                             

132 While the wave function generally does not represent a straightforward wave in three-dimensional space, the 
question remains whether there is some sort of physical wave associated to it. Several physicists, including Einstein, 
de Broglie, Schrödinger and Bohm, believed that there should be, but although efforts to find one still continue today, 
they have not resulted in theories that enjoy mainstream approval. 
Others, including Pauli, Heisenberg and Bohr were against this realistic picture and regarded the wave function as a 
mere mathematical tool to provide probabilities. Indeed, they argued that questions such as "where is the particle 
when we are not looking" are meaningless: science cannot describe nature per se, but only our knowledge of it. So the 
only kind of questions we can answer are questions about possible outcomes of measurements. And that is precisely 
what the wave function gives us. This view is known as the Copenhagen interpretation of quantum mechanics. It is in 
stark contrast to the intuition classical physics is based on: that there exists an objective reality even when we are not 
looking and that science can describe that reality ([F16]).  
For an in-depth discussion of this issue the reader is referred to [S9]. 

133 It is because of this interference that we have to add probability amplitudes first, before we can calculate the 
probability of an event happening in one or the other (indistinguishable) way (let us say   or  ) – instead of just 

adding probabilities as we would do in the classical world. It makes a big difference:  
 

 
 
 
 
is the probability 

when we cannot distinguish the alternatives, while  
 
 
 
   

 
 
 

 is the probability when we can see what happens 

(i.e. we can see whether   or   was the case). Now,      
 
 is definitely not the same as    

 
     

 
. ([R2]) 

134 Reminder:   = (/t,  ) and    = (V, A ).    is manifestly invariant because all the objects in its definition are 

4-vectors. 
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The solution (t,  ) of the Schrödinger equation (5.5) describes completely the state of the 
particle moving under the influence of the potentials   and  . However, these potentials are not 
unique, as we have already seen: they can be changed by a gauge transformation (cf. (4.12) and 
(4.13)) 

(5.9)                      =   +,              =     ∂ ∂t 

without changing Maxwell’s equations for the fields   and  . 

This immediately raises an important question: if we carry out such a change of potentials in 
equation (5.5), will the solution of the resulting equation describe the same physics as the 
solution of equation (5.5 ? If it does  we shall be able to assume the validity of Maxwell’s theory 
for the quantum world; if not, some modification will be necessary, since the gauge symmetry 
possessed by Maxwell’s equations will be violated in the quantum theory. ([A1]) 

The answer to this question is obviously negative since the same  cannot possibly satisfy 
both (5.5) and the analogous equation with ( ,  ) replaced by (  ,   ). Unlike Maxwell’s 
equations, the Schrödinger equation is not gauge invariant. But we must remember that the 
wave function  is not a directly observable quantity, as the electromagnetic fields   and   are. 
Perhaps  does not need to remain unchanged (invariant) when the potentials are changed by a 
gauge transformation. In fact  in order to have any chance of ‘describing the same physics’ in 
terms of the gauge-transformed potentials, we will have to allow  to change as well. This is a 
crucial point: for quantum mechanics to be consistent with Maxwell’s equations it is necessary 
for gauge transformations (5.9) of the electromagnetic potentials to be accompanied also by a 
transformation of the quantum-mechanical wave function   ‘. ([A1]) 

It turns out that the required ‘ is  

(5.10)                      ‘ t   ) := e       (t,  ), 

where  is the same spacetime-dependent function as appears in equations (5.9). Indeed, it is 
easy to verify that when we replace in (5.5) ( ,  ) and  by (  ,   ) and ‘  respectively  then 
the form of the resulting equation is exactly the same as the form of (5.5). Thus it means that 
(5.5) is gauge covariant, i.e. it maintains the same form under the combined transformation 

(5.11)              =   +,         =     ∂ ∂t,      ‘ = e   . 

It is important to note that gauge transformation in quantum theory involves both the 4-vector 
potential    = ( ,  ) and the particle's wave function . 

But do  and ‘ describe the same physics, in fact? The answer is yes, but it is not quite 
obvious. Of course, the probability densities are equal 

       |‘|2 = |e  |2 = |e  |2 ||2 = ||2, 

because  

                                                             |e |2 = e e   = e0 = 1  

for every . However, we can be interested in other observables, for example, involving the 
derivative operators ∂ ∂t  or .  Such quantities need not be invariant under (5.10) because the 
phase  is (t,  )-dependent (135).  

The solution is to replace ∂ ∂t and  by    and  , respectively, according to (5.7). It turns 
out that any equation involving the operator   can be made gauge covariant under the 

combined transformation (cf. (4.19)) 

 5.  ’                         
  =       ,      ‘   e  , 

                                                             

135 It means that derivatives of ‘ yield terms with derivatives of  and one cannot get rid of them. This spoils gauge 
invariance (or covariance). 
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if   is replaced by    =   + i    (see (5.8)) (136). In fact, this is a simple prescription for 

obtaining the wave equation for a particle in the presence of an electromagnetic field from the 
corresponding free particle wave equation: make the replacement      . This is the basis of 

the so-called gauge principle.  

This new kind of derivative    =   + i    turns out to be of fundamental importance, as 

we shall see below. It is called the gauge covariant derivative, the term being usually shortened 
to covariant derivative, due to its covariance under gauge transformations ([A1]). One can easily 
show that the commutator  [  ,   ] of two covariant derivatives is 

(5.12)                                        [  ,   ] :=           = i    . 

The important property of the covariant derivative is that under combined transformations 
 5.  ’ ,  

                                                               e         (t,  ), 

i.e.    transforms in the same way as  in (5.10), even when  is a function of x . This property 

ensures the gauge covariance of wave equations.  

Observe that the transformation law (5.9) is a property of the gauge field   , and does not 

know anything about  , which instead is a parameter related to the field . This particular real 
number quantifies the electric charge of the entity described by . In fact  this ‘entity’ will 
generally be some charged quantum particle, such as an electron or proton, and  would then be 
its quantum-mechanical wave function. The potential    provides the mathematical key to the 

procedure whereby the electromagnetic field interacts with the matter field . The coupling 
between    and  is obtained using the covariant derivative, which depends on the electric 

charge   of :    = (  + i   ). This method of coupling matter to the electromagnetic field 

is known as the minimal coupling (137) ([M1]). 

The vector potential    was optional in classical electromagnetism but is mandatory in 

quantum mechanics, because it appears explicitly in the equation of motion. However, it is not 
directly observable, being determined only up to a gauge transformation. David Bohm (138) 
found this situation curious. He theorised that the strange role of the vector potential was a fatal 
flaw in the theory. In 1959, he and his student Y. Aharonov (139) proposed an experiment to test 
this hypothesis ([A0]). Reliable experimental verification of the Aharonov-Bohm effect was not 
achieved until more than twenty years later, at which point the result was precisely as predicted 
by quantum mechanics ([O4]). This outcome serves to reinforce the fundamental role of the 
vector potential. It is noteworthy, however, that the vector potential itself remains unobserved, 
as the experiment does not directly measure   but rather the integral       ([H7]). 

Our final remark: the Schrödinger equation is obviously non-relativistic (140), but Maxwell’s 
equations are fully relativistic. One might therefore suspect that the prescriptions presented 
here are actually relativistic as well, and this is indeed the case. Besides, the quarks and leptons 
(141) have spin-½, a degree of freedom absent from the Schrödinger (scalar) wave function. In 

                                                             

136 This can be derived from (4.18) by substituting   with i /t and   with  i . 

137 Minimal coupling refers to a coupling between fields which involves only the charge distribution and not higher 
multipole moments of the charge distribution ([W11]). 

138 David Joseph Bohm (1917 – 1992) was an American physicist. 

139 Yakir Aharonov (1932 –) is an Israeli physicist. 

140 The Schrödinger equation is of the first order in time but of the second order with respect to  . So it cannot be 
Lorentz covariant, because this transformation replaces t and    with linear combinations of t and x. 

141 See Chapter 2. 
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sections 5.6 and 5.8 we shall therefore discuss two generalizations – from non-relativistic to  
relativistic for spin-0 particles, and from spin-0 to spin-½ ([A1]). (142) 

5.3. The Schrödinger probability density current 

In the previous section, we have seen that the (normalised) wave function  defines the 
probability density ρ (t,  ) := |(t,  )|2 =  (t,  )*(t,  ), where * denotes the complex 
conjugate of .   

In quantum mechanics probability is conserved, so if you observe that the probability of 
finding a particle at some point changes in time, then you deduce, that there must be a 
probability current flowing in or out. For example, in the case of a free particle solution, the 
probability density is uniform over all space, but there is a net flow along the direction of the 
momentum. However, the conservation law is local, so just like for the charge conservation (see 
Section 4.2). We may derive the conservation of the probability in Schrödinger's equation from 
the local continuity equation. Taking a time derivative of ρ (t,  ) and using the Schrodinger 
equation (5.4) for  and * we get 

ρ (t,  )/t =  
 

   
[(t,  )*(t,  )   *(t,  )(t,  )]. 

The 3-vector  

                                                                    :=  
 

   
 (*   *)  

is called the probability density current of the wave function . Rewriting the above equation we 
find the continuity equation for the probability density 

(5.13)                             =  ρ /t 

which is analogous to the continuity equation for electric charge (4.2) and expresses 
mathematically the fact that probability density is locally conserved ([A1]). So the probability ρ  
in a tiny box decreases exactly by the amount that may be calculated as the flux of the 
probability current through the six faces of the little box (through its boundary) via Gauss' 
theorem. In particular, ρ  = ||2 integrated over all space, is constant in time (143). 

The quantity  j    := (ρ ,   ) = (||2,   ) is a 4-vector being conserved 4-density current:  

                                                                             j  
  = 0. 

5.4. The gauge principle in electromagnetism  

In the preceding section, we considered the Schrödinger equation (5.6) for a charged particle in 
an electromagnetic field. Then we showed its gauge covariance under the combined 
transformation (5.11’).  

                                                             

142 It should be noted that to make quantum mechanics consistent with special relativity, the real problem is not to 
find a relativistic generalization of the Schrödinger equation. Quantum mechanics, as formulated by Bohr, Heisenberg, 
Schrödinger, Pauli, Dirac, and many others, is an intrinsically non-relativistic theory. Wave equations, relativistic or 
not, cannot account for processes in which the number and the type of particles changes, as in almost all reactions of 
nuclear and particle physics. This issue is solved with methods of quantum field theory (QFT) ([M1]). 

143 Notice that this implies that the total probability to find a particle at any position is conserved. A drawback here is 
that (ordinary) QM cannot hope to describe a theory in which the number of particles changes with time. This is easy 
to see: if a particle disappears, then the total probability to find it beforehand should be unity and the total probability 
to find it afterwards should be zero. This issue is solved in quantum field theory. The QFT formalism allows 
considering a changing number of particles within the same framework. This requires the use of the concept of Fock 
space, and the use of creation and annihilation operators. The entire process of setting this up is called second 
quantisation ([G7]). A Fock space is a special construction of a Hilbert space (cf. Section 5.9). The basic idea is that the 
Fock space allows you to superpose tensor products of distinct degree. Thus one can describe states on which the very 
number of particles is uncertain and becomes an observable with probabilities and mean values as any other 
observable (see Section 5.9 for the meaning of observables and states in quantum physics). 
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Now let us start with the free-particle Schrödinger equation (5.4) and discuss consequences 
of demanding covariance under the spacetime-dependent (i.e. local) transformation of the wave 
function ([A1]) 

(5.14)                   (t,  )  ‘ t   ) = e       (t,  ). 

The situation in which the wave function can be changed in a certain way without leading to 
any observable effects is precisely what is entailed by a symmetry or invariance principle in 
quantum mechanics. In the case of a constant overall change in phase   ‘ = e  ,  = 
constant, the invariance principle guarantees that any choice of  is equivalent to any other. This 
symmetry is an internal symmetry, because it is clearly no spacetime transformation and 
therefore transforms the field  internally. This internal symmetry does not look at a first glance 
like a big thing. However, quite surprisingly we shall see in a moment that this symmetry is 
incredibly important when it is made local. ([A1]) 

Invariance under a constant change in phase is an example of a global invariance, according 
to the terminology introduced in Section 3.5. However, as we have seen in Section 4.4, the 
interconnection of electric and magnetic effects can be related to a local  invariance requirement 
  in this case, electromagnetic gauge invariance. Such a move from a global to a local invariance 
is of crucial significance in classical electromagnetism and provides also the key to an 
understanding of the other interactions in the Standard Model. ([A1]) 

Let us see, then, where the demand of local phase invariance (5.14) of the field  leads us (or 
rather, more accurately, a corresponding covariance). The immediate problem is that this is 
obviously not a covariance of the free-particle Schrödinger equation (5.4). The equation (5.4) 
does not have the same form when we replace in it (t,  ) by e       (t,  ). The reason is that 
both  and ∂ ∂t now act on (t,  ) in the phase factor. Thus local phase covariance is not a 
covariance of the free-particle wave equation (5.4). ([A1]) 

Consequently, if we demand this covariance, we have to modify the equation (5.4) into 
something for which there is a local phase covariance. But this modified equation will no longer 
describe a free particle. Thus the freedom to alter the phase of a charged particle’s wave function 
locally is only possible if some kind of force field is introduced in which the particle moves. In 
more physical terms, the covariance will now be manifested in the inability to distinguish 
observationally between the effect of making a local change in phase and the effect of some new 
field in which the particle moves. ([A1]) 

What kind of field will this be? Since the local phase transformation (5.14) is just the phase 
transformation associated with electromagnetic gauge invariance (5.11), we must modify the 

free-particle equation i(/t) =   
 

  
  to  

         i(/t + i  ) =  
 

  
    i    , 

which is precisely the Schrödinger equation (5.6) describing the interaction of the charged 
particle with the electromagnetic field    = (V, A). Thus the presence of the vector field   , 

interacting with any particle of charge q, is dictated by local phase invariance. ([A1]) 

Such a vector field, introduced to guarantee local phase invariance, is called a gauge field. 
The principle that the interaction should be so dictated by the local phase (or gauge) invariance 
is called the gauge principle. This principle allows one to write down the wave equation for the 
interaction directly from the free particle equation via replacement (144) ([A1]) 

                                                                =   + i   . 

                                                             

144 It is important to note that the form of the covariant derivative depends on the transformation properties of the 
field on which it acts. For instance, for fields transforming as in Eq. (5.14),    depends on the parameter   ([M1]). 
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This procedure is expressed by saying that we have gauged the global U(1) symmetry, 
promoting it to a local symmetry. The resulting theory is called a gauge theory. More precisely, it 
is a U(1), or Abelian gauge theory, since we have gauged a U(1) symmetry ([M1])  cf. Section 
5.5.  

To summarise: 

 Consider a matter system with global gauge invariance, which guarantees the existence 
of a conserved charge. 

 The global gauge invariance is then to be extended to local gauge invariance through the 
replacement      , thereby introducing a coupling to a gauge field. 

As we shall see in Chapter 6, the gauge principle led to the discovery of Yang-Mills theory, 
which is a non-Abelian gauge theory (145). 

Finally, let us observe that the gauge invariance requires that photon as the boson of the 
gauge field    must be massless. Otherwise, we would have to add to the Lagrangian density a 

non-invariant term       = 
 

 
       (= the rest-mass energy of photon) (146). And since this is 

true for any gauge field, it has important implications for every Yang-Mills theory. 

5.5. The gauge group U(1) of electromagnetism 

Let us look more closely at the nature of the symmetry related to invariance under (5.14). It is 
not a symmetry which – as in the case of Lorentz invariances for instance – involves changes in 
the spacetime coordinates. Instead, it operates on the real and imaginary parts of the field .  

We shall see that the transformation (5.14) is a kind of rotation in two dimensions. There is 
a way to describe rotations in two dimensions that makes use of complex numbers: rotations 
about the origin by angle  can be described by multiplication with a unit complex number u = v 
+ iw which fulfils the condition |u|2 = u*u = 1, where u* = v – iw denotes the complex conjugate 
of u. For a complex number z = x + iy, x is called the real part of z: Re(z) = x and y the imaginary 
part: Im(z) = y. The unit complex numbers lie on the unit circle in the complex plane: 

                                                                

Another way to write a complex number z = x + iy is z = |z|e   = |z|(cos   + isin  ) (147). Thus 

for a unit complex number u = e   the transformation z  uz = e  z = e  |z|e   = |z|e       = 
means that z is rotated by the angle  in the Re-Im plane 

                                                             

145 Yang and Mills replaced the gauge group U(1) of electromagnetism by the non-Abelian group SU(2) – see Chapter 6 
for details. 

146 The term      is not invariant under the gauge transformation            because (     )(        ≠ 

    . Reminder:    :=      =       , where    is the Minkowski metric.   

147 This is known as Euler’s formula. 
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We call this plane an internal space and the associated symmetry an internal symmetry. 
Thus the phase invariance (5.14) can be looked upon as a kind of internal space rotational 
invariance. 

The set of all phase transformations z  u(z) := e  z, with real , forms a group called U(1) 
(148). It is an Abelian group since the transformations of the U(1) have the simple property that it 
does not matter in what order they are performed: z  (uu )(z) = e       = e       = (u u)(z). 

Thus we say that the electromagnetic gauge group is U(1). We must remember, however, 
that it is a local U(1), signifying that the phase parameters α     . . . depend on the spacetime 
point (t,  ). In other words, this means that an independent U(1) gauge group is to be associated 
with each spacetime point. To achieve this, it is necessary to introduce a vector gauge field, to 
which the matter field current becomes coupled. The coupling constant is the electric charge, the 
generator of U(1) (see Example 7.1). It is important to note that the original global symmetry 
can be gauged only if it is an exact symmetry. 

We shall see later (in Chapter 6  that the ‘internal’ symmetry space relevant to the Yang-
Mills invariance is not so simple. The ‘rotations’ in this case are more like full three-dimensional 
rotations of real space, rather than the above two-dimensional rotations in the Re-Im plane. 
However in general, such 3D real-space rotations do not commute (see Example 3.3), and the 
same will be true of the Yang-Mills ‘rotations’ which build a non-Abelian group. The generalized 
gauge principle, as initially proposed by Yang and Mills, applies to multicomponent matter fields. 
Thus instead of U(1), the gauge group must be a larger group of transformations that mix the 
different components of the matter field ([H14]). 

5.6. The Klein-Gordon equation 

Physical equations should be Lorentz covariant, meaning that they must be covariant under 
Lorentz transformations – that is, they must have the same form in the two different reference 
frames. The simplest relativistic wave equation is the Klein-Gordon (149) equation which 
describes a scalar particle (i.e. spin-0 particle) of mass   (150).  

For a relativistic wave equation we must start with the correct relativistic energy–
momentum relation. Energy and momentum appear as the ‘time’ and ‘space’ components of the 
momentum 4-vector p  = ( /c,  ) = ( , p) which satisfy the condition p  = p p

  =       = 

     see Section 3.3 (151). Schrödinger, before settling for the less ambitious non-relativistic 

                                                             

148 The group operation (u, u )   uu   on U(1) is the usual function composition z   (uu )(z) = u(u (z)). 
149 Oskar Benjamin Klein (1894 –1977) was a Swedish theoretical physicist; Walter Gordon (1893 – 1939) was a 
German theoretical physicist. 
150 Actually, Schrödinger first derived a relativistic equation, that today we call the Klein-Gordon equation. He then 
discarded it because it gave the wrong fine structure for the hydrogen atom, and he retained only the non-relativistic 
limit. His relativistic wave equation was independently rediscovered by O. Klein and W. Gordon ([M1], [W1]). 
151 Reminder: c        . 
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Schrödinger equation, and later Klein and Gordon, attempted to build relativistic quantum 
mechanics (RQM) from the squared relation    =      +      instead of from the non-

relativistic energy–momentum relation   = 
  

  
 .  Using the operator replacements    i /t 

and     i  we obtain ([A1]) 

(5.15)                     
 /   = (  c 

 
       )   

which is the Klein–Gordon equation (KG equation). We consider the case of a one-component 
scalar (complex) wave function (t,  )  (t,  )   : one expects this to be appropriate for the 

description of spin-0 bosons. Applying the d’ lembertian    =  
 =  /       we can, 

using natural units, write the Klein-Gordon equation in the form 

(5.16)                                 (   +   )  = 0. 

Now let us ask if there is a Lagrangian density for the (free) field  from which we can derive 
the Klein-Gordon equation (KG) by the principle of least action. Let us assume that someone 
hands us the Lagrangian density (152) 

                                                                
     =  

 
 ( *      ), 

where * denotes the complex conjugate of . It is conventional to call the first term here the 
kinetic term and the second one the mass term. Applying the Euler-Lagrange equation to this 
Lagrangian one can easily derive the corresponding equation of motion which is exactly (5.15).  

If a (spin-0) particle has electric charge   (like meson + or  ), one needs to suitably insert 
the electromagnetic potential    into the Klein-Gordon equation. More precisely, the equation 

(5.17)              (   +   )  =   i [  
  +   

 ] +        

describes a scalar particle of mass   and charge   in the presence of an electromagnetic field.  

Consider a Lorentz transformation such that x  x’  i.e.  t,  )  (t ,   ) and write the 
transform of  as (t,  )  ’ t ,   ).  ince x’ is a known function of x, given by the angles and 
velocities parameterising the Lorentz transformation (see Section 3.2), one can construct the 
correct function ’ which the primed observers must use  in order to be consistent with the 
unprimed observers. Consequently, the wave function in the primed frame may be identified (up 
to a phase) with that in the unprimed frame: ’ t ,   ) =  (t,  ). Now the 4-dimensional dot 
products appearing in (5.17) are all invariant under the Lorentz transformation so that equation 
(5.17) is covariant under Lorentz transformations. ([A1]) 

Notice that we can derive the KG equation (5.17) from the free equation (5.16) by applying 
the gauge principle. All we have to do is to replace   by    =   + i    (see Section 5.4).  

Indeed, let us replace   by    in (   +   ) = 0: 

0 = (   +   )  
   = ( 

  +   )  

   = (     +   )  

   = (  + i   )(  + i   ) +     

   = ( 
  + i     + i   

           ) +    

   =  ( 
  +   )  + i [    +   

 ]          

   =  (   +   )  + i [    +   
 ]         . 

Consequently, we obtain (   +   )  =  i [    +   
 ] +        as needed.  

                                                             

152 This choice can be motivated by looking at the Lagrangian for a classical harmonic oscillator ([A3]).  
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Since the KG equation is derived from the squared relation    =    +   , it implies that for a 
given 3-momentum   there are in fact two possible solutions for the energy, namely  

                                                                =             . 

As Schrödinger and others quickly found, it is not possible to ignore the negative solutions 
without obtaining inconsistencies. Negative energy states are problematic because there is 
nothing to stop the vacuum decaying into these states (153). In classical relativistic mechanics, 
the problem of these negative energy solutions never appears, because we could simply throw 
them away, declaring that all particles (or rockets or whatever) have positive energy. But when 
we solve a wave equation (as we do in QM), completeness requires us to include both positive 
and negative energy solutions in order to be able to find a general solution. ([A1]) 

But there is one more problem with the KG equation. In exactly the same way as for the non-
relativistic Schrödinger equation (cf. (5.13)), it is possible to derive a conservation law for a 
‘probability current’ of the Klein-Gordon equation 

                                                                       =  ρ  /t, 

where  

                                                        ρ   := i(*/t   */t)  

and  

                                                               :=  
 

 
 (*   *).  

 o far so good  but note that the ‘probability density’ ρ   now contains time derivatives. This 
means that ρ   is not constrained to be positive definite (154) – so how can ρ   represent a 
probability density? ([A1]) (155) 

Historically, this problem of negative probabilities coupled with that of negative energies led 
to the abandonment of the Klein-Gordon equation. However, these issues were later on solved 
within the formalism of quantum field theory. ([A1]) 

5.7. An interlude on spinors, helicity and chirality (156) 

Spinors began to find a more extensive role in physics when it was discovered that fermions 
have a half-integral spin which is correctly captured by the mathematics of spinors. Pauli (157) 

                                                             

153 Energy spectrum is in this case not bounded from below, so a particle can emit an infinite amount of energy (no 
ground state). QFT solves this problem by interpreting negative solutions as antiparticles. 

154 The KG equation has a ∂2 ∂t2 term: this leads to a ‘probability density’ containing ∂ ∂t  and hence to negative 
probabilities. 

155 In general, a physical theory for calculating probabilities should not be dismissed as erroneous if it yields a 
negative probability for a given situation under specific assumed conditions. There may be alternative explanations 
that could be postulated ([F12]).  
     See also [K0] for p-adic probability theory. In the field of p-adic probability theory, probabilities are expressed 
through the utilisation of p-adic numbers as opposed to real numbers. This approach facilitates the exploration of 
novel mathematical structures and models, particularly within the domain of quantum mechanics. Notably, within the 
framework of p-adic probability theory, probabilities can assume negative values. The theory utilises an alternative 
metric, termed the p-adic metric, to define probabilities. This enables the consistent and mathematically rigorous 
incorporation of negative probabilities. 

156 For further information, please refer to the comprehensive introduction to spinors [S12] and the detailed analysis 
of helicity and chirality in [S0], respectively. 

157 Wolfgang Pauli (1900 – 1958) was an Austrian (and later American / Swiss) theoretical physicist and one of the 
pioneers of quantum physics – 1945 Nobel Prize in Physics. 
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modelled in 1927 the electron spin in a non-relativistic context using a two-component complex  
vector and introducing the Pauli spin matrices (5.23). (158) 

We shall see in the next section that spinors are important for the Dirac equation which 
describes all of the known fundamental particle fermions in nature. All known fermions, the 
particles that constitute ordinary matter, have a spin of ½ (see Chapter 2). The spin number 
describes how many symmetrical facets a particle has in one full rotation; a spin of ½ means that 
the particle must be fully rotated twice (through 720°) before it has the same configuration as 
when it started. Ordinarily, when one rotates an object 360°, it goes back to the same thing it 
started out as. This is common sense, but as we learned in quantum mechanics, common sense 
can be misleading. The necessity of introducing half-integer spin goes back experimentally to the 
results of the Stern–Gerlach experiment in 1922 (159). 

A spinor is a mathematical object that models this strange behaviour of spin-½ particles. It 
appears that Felix Klein (160) originally designed the spinor to simplify the treatment of the 
classical spinning top in 1897. As mathematical objects, spinors were introduced in geometry by 
Élie Cartan (161) in 1913. They are closely related to Hamilton’s quaternions  about  845 .  

Cartan defined spinors in terms of isotropic 3-vectors with complex components:   = (  ,   , 
  )    . A vector   is said to be isotropic if its dot (scalar) product with itself is zero:  

                                                                     :=   
  +   

  +   
  = 0.  

                                                             

158 In 1921, Arthur Compton (an American physicist, Nobel Prize in Physics in 1927) suggested that electron spin 
would be an essential ingredient in any reasonable explanation of bulk paramagnetism and ferromagnetism. 
 nfortunately  Compton’s proposal had almost no impact on his contemporaries.   t that time  the anomalous Zeeman 
effect was a persistent puzzle that absorbed the attention of several physicists. Anomalous Zeeman effect is the 
splitting of spectral lines of an atomic spectrum caused by the interaction between magnetic field, the combined 
orbital and intrinsic magnetic moment. This effect can be observed as a complex splitting of spectral lines. 
      On January 7, 1925, the 20-year-old German Ralph Kronig (a Columbia University PhD student), when visiting 
Tübingen, was shown a letter from Pauli (who was 25 years old) in which Pauli emphasized that to understand the 
anomalous Zeeman effect, it would be necessary to endow the electron with a fourth quantum number with only two 
discrete values. On reading this letter, Kronig was struck with inspiration, and that very afternoon he invented a 
concept of electron spin. His mental picture of the electron was of a tiny spinning classical sphere, and his 
interpretation of Pauli’s fourth quantum number was that the spin axis could point in only two  opposing  directions. 
The next day Kronig explained his idea to Pauli, who said: "it is indeed very clever but of course has nothing to do with 
reality". Pauli realized that the fourth quantum number corresponded to a classically non-describable degree of 
freedom  so he must have viewed Kronig’s classical picture of the electron as unacceptably naïve. Several weeks later 
Kronig presented his idea again at Niels Bohr’s institute in Copenhagen.  nfortunately  Bohr and others also gave it a 
cold reception, objecting on the same grounds as Pauli had. Faced with such criticism, Kronig decided not to publish 
his theory and the idea of electron spin had to wait for others to take the credit. 
     The next development occurred in autumn 1925 in Leiden, Holland, where Uhlenbeck, 24, and Goudsmit, 23, were 
students of the professor of theoretical physics Paul Ehrenfest.  hlenbeck and Goudsmit  unaware of Kronig’s efforts  
essentially reinvented the latter’s idea in one afternoon. They had a much more kind review on their work from 
Ehrenfest, who said that it was either nonsense or something very important, that they should write up a short paper, 
and that all three would then consult Professor Hendrik Lorentz. Lorentz listened courteously to them and promised 
to give them his reply. In several days, Lorentz did reply at length in a handwritten manuscript in which he gave a 
number of serious objections to  hlenbeck and Goudsmit’s proposal. They told Ehrenfest of this and wished to 
withdraw their paper. However, Ehrenfest had already sent it to the publisher. He told them not to worry: they were 
young enough to be forgiven for their stupidity.  
     In February 1926, Llewellyn H. Thomas, a 23-year-old British physicist, realized that the spin-orbit effect described 
by Uhlenbeck and Goudsmit required a relativistic correction. He calculated relativistic effects on the spin–orbit 
interaction in a hydrogen atom (Thomas precession) and could understand the anomalous Zeeman effect. In March 
 9 6  when Pauli learned of Thomas’s result  he was converted to the idea of electron spin  and within about a year he 
developed a formalism for describing the spinning electron in non-relativistic quantum mechanics – see [C5] for a 
comprehensive history of spin discovery which is well worth reading . 

159 Otto Stern (1888 – 1969) was a German-American physicist and Nobel laureate in Physics 1944. Walther Gerlach 
(1889 – 1979) was a German physicist. The experiment was conceived by Stern in 1921 and first successfully 
conducted by Gerlach in early 1922. 

160 Felix Klein (1849 – 1925) was a German mathematician (known for the Erlangen program and the Klein bottle). 

161 Élie Cartan (1869 – 1951) was an influential French mathematician. 
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For example  

                                                            = (1, i, 0) = (1+i0, 0+i, 0+i0)  

is isotropic because    = 1 + ( 1) + 0 = 0. 

To every isotropic 3-vector   = (  ,   ,   ) one can assign a complex 2-vector  = (1, 2)  
   whose components satisfy the equations:  

(5.18)                                   
 
    

 
  = z1,     i(

 
  + 

 
 ) = z2,      212 = z3. 

Notice that if  solves the system (5.18) then   is also its solution. Thus there are two 2-vectors 
corresponding to an isotropic 3-vector. These 2-vectors are called spinors. One can show that  

                                                 1 =   
       

 
,   2 =   

        

 
. 

However, spinors and vectors are completely different kinds of objects. To see it, let us 
consider a rotation by 360° around an arbitrary axis. A vector remains completely unchanged by 
such a full rotation. A spinor on the other hand is not unchanged by a full rotation – it changes its 
sign. We need to rotate a spinor twice by 360° (i.e. by 720°) to get it back to its initial 
configuration. 

Example 5.1. Let us consider the isotropic 3-vector   = (1, i, 0). One corresponding spinor is 
then  = (1, 0). If   is rotated in    around the z-axis by the angle  we get the 3-vector  

                                                     cos      isin            sin    + icos                0)  
                                                   = (cos(    + isin(     i cos     + isin(      0  
                                                   = (    , i    , 0) =     (1, i, 0) =      . 

Now let us look at the spinor ’ corresponding to    

  ’     
              

 
,  

               

 
 ) = ( 

     

 
, 0) = (      , 0) =       . 

But it means a rotation of  around the first axis by the angle /2.  

Generally, the 22 matrix that describes how a spinor transforms under rotation around the 
first axis is 

R() =  
    

 

 
    

 

 

    
 

 
   

 

 

 . 

For   = 2 we get 

R(2) =  
    

 

 
    

 

 

    
 

 
   

 

 

  =  
  0
0   

  =  I2. 

This means that a spinor changes the sign after a full rotation. Notice that R(4) = I2, where I2 

denotes the 22 identity matrix. So we need to rotate a spinor by 4 (i.e. by 720°) to get it back 
to its initial configuration ([S2]). 

There are several ways of illustrating spinors using everyday analogies in terms of the 
Dirac’s belt  tangloids and other examples of orientation entanglement. Nonetheless, the concept 
is generally considered notoriously difficult to understand (162). The Dirac’s belt is related to a 

                                                             

162 Even M.  tiyach  winner of the Fields Medal  declared that “no one fully understands spinors. Their algebra is 
formally understood, but their geometrical significance is mysterious. In some sense they describe the ‘square root’ of 

geometry and, just as understanding the concept of      took centuries, the same might be true of spinors.”  [  ] . 

R. Feynman was once asked by a Caltech faculty member (David L. Goldstein) to explain why spin one-half particles 
obey Fermi-Dirac statistics. Feynman said  “I’ll prepare a freshman lecture on it.” But a few days later he told the 
faculty member: “You know  I couldn’t do it. I couldn’t reduce it to the freshman level. That means we really don’t 
understand it.” ([G4] I thank Prof. M. Bulenda for pointing to this reference.) Feynman meant here that understanding 
something is not just about working through advanced mathematics. One must also have a notion that is intuitive 
enough to explain to an audience that cannot follow the detailed derivation.  
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Möbius strip. A spinor can be visualized as a vector pointing along the Möbius strip, exhibiting a 
sign inversion when the circle  the ‘physical system’  is continuously rotated through a full turn 
of 360° ([W11]): 

                                                    

One has to go around one more time to come back to your original orientation. Spinors have the 
same property. That is why a spinor can be illustrated by a Möbius strip. One gets this strip by 
cutting a regular strip in one spot, turn one end by 180° and connect it back to the other end. 

Following [S0], we can view spin as a wave going around on a circle. The spin wave of a 
(vector) boson goes around on a regular circle and is quantized into integer units. The spin wave 
of a fermion (spin-½ particle) goes around a Möbius strip and takes two rounds to get back to its 
original position. Thus we can connect spin of bosons and fermions to the two types of rotation 
depicted below 

                               

Notice that there are two ways of making a Möbius strip. You can turn one end of a regular 
strip by 180° in two directions before you tape it back to the other end. When you turn the one 
end by 180° left around you get one chirality of the Möbius strip. If you turn it 180° right around 
you get its mirror image: the other chirality. The mirror image of a Möbius strip is again a 
Möbius strip, but one that cannot be turned in three dimensions to be equal to its original. 

Chirality is the property of an object that it has a mirror image asymmetric to itself. For 
instance a left hand. In the mirror a left hand looks like a right hand. And you cannot rotate your 
right hand in any way so it becomes your left hand. Both chiralities have the same effect: going 
around once leads you to the other side of the Möbius strip. So the chirality of the Möbius strip 
has no impact on the spin waves. This can be done in each chirality in an equal manner. 

The combinations chirality/spin correspond exactly with the four ways a fermion can rotate, 
as depicted below 
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A spin wave in one chirality goes through a different path with different directions of the 
spinor field compared to the other chirality. The consequence is that we have to distinguish the 
two chiralities as two different particle types: left-chiral and right-chiral (163). It makes the 
behaviour of fermions more complex as we shall see in Section 7.4. One interesting problem is, 
for example, that a neutrino exists only as a left-chiral particle. It is unknown why there is no 
right-chiral neutrino. This too suggests considering the left and right-chiral particles as a 
different breed ([S0]). 

In conclusion, the following four possible fermion states can be identified: 

 left chirality and spin-(+½)  

 left chirality and spin-( ½)  

 right chirality and spin-(+½) 

 right chirality and spin-( ½). 

It is important to note, however, that the above visualisation utilising the Möbius strip is 
merely a picture that assists in comprehending the underlying principles, yet does not 
necessarily reflect the absolute truth of what spin is. What spin really is, is not known. We can 
only measure the characteristics, and we cannot see directly what spin is ([S0]). 

Both spin and chirality are related to helicity, which is also a property of particles. However, 
it is noteworthy that the terms spin, helicity, chirality, and handedness are not used consistently 
in the literature. The issue is that the term ‘handedness’ is a highly intuitive and convenient way 
to describe both chirality and helicity. Consequently, courses and textbooks may employ the 
term ‘handedness’ to describe the term that is used more frequently. There is no established 
standard. In order to facilitate clarity, a brief clarification of their precise relationship is 
provided. 

The direction of spin is described by an arrow positioned perpendicular to the surface of the 
spin circle. The direction of the spin arrow is determined by the right-hand rule. It is evident that 
there are merely two potential orientations for rotation: left around, formally designated as spin 
up, and right around, formally designated as spin down. 

                                     

The entire concept is based on convention. There is no underlying significance to the right hand 
rule. 

The term helicity  is used to describe the component of spin that is aligned with the direction 
of the momentum vector. In other words, helicity is the projection of the spin vector upon the 
momentum. Given the existence of two distinct spinning directions, helicity is also observed to 
assume two distinct values. These are as follows: 

1. positive helicity, represented by +1, whereby the spin is oriented in the direction of 
propagation; and 

2. negative helicity, represented by  1, whereby the spin is oriented in the opposite 
direction. 

                                                             

163 Also called left-handed chirality and right-handed chirality, respectively. 
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It hence follows that a particle can possess a helicity of either +1 or  1, provided it is not a 
scalar (164) ([S0]). It is also possible for massive non-scalar particles to possess neutral helicity, 
represented by the value of 0, when the spin is perpendicular to the direction of motion. 

The helicity of a massive particle with spin is not Lorentz invariant. Indeed, in this case it is 
possible for an observer to change to a reference frame moving faster than the spinning particle. 
In such a frame, the particle will appear to move backwards, and its helicity will be reversed. In 
other words, the helicity may change sign under the action of a Lorentz boost. 

In contrast, a massless particle moves at the speed of light, so a real observer (who must 
always travel at less than the speed of light) cannot be in any reference frame where the particle 
appears to reverse its relative direction. Consequently, all observers see the same helicity. As 
result, the direction of spin of massless particles is not affected by a Lorentz boost in the 
direction of their motion, and the sign of the projection (helicity) is constant across all reference 
frames. This demonstrates that the helicity of a massless particle is a relativistic invariant. 

We will now proceed to discuss the relationship between helicity and chirality. 

The term chirality  is used to describe the property of an object that possesses a mirror 
image which is asymmetric to itself. In the preceding discussion, the term chirality was defined 
as the twist direction of the Möbius strip (165). They are each other's mirror images. The 
fundamental distinction between bosons and fermions is their spin. As previously indicated, 
fermions manifest a spin wave around a Möbius strip, whereas bosons display a spin wave 
around a regular circle. Consequently, fermions are classified into two chiralities, whereas this 
property is not exhibited by bosons. Both chiralities have identical effects; a circuit around one 
leads to the other side of the Möbius strip. It can be concluded that the chirality of the Möbius 
strip has no impact on the spin waves. In both chiralities, the spin can be either up or down. 
([S0]) 

In the case of massive fermions it is necessary to distinguish between chirality and helicity. 
In this context, helicity is not a Lorentz-invariant attribute, while chirality possesses this 
property. However, chirality is not a constant of motion. A massive left-chiral fermion will evolve 
into a right-chiral fermion over time, and vice versa (166). Thus, its quantum mechanical state is a 
mixture of two opposing chiralities. ([W11]) 

The chirality remains unaltered when observed from different frames, as this would 
necessitate a parity operation that encompasses a mirror reflection. It is not possible to achieve 

                                                             

164 The positive helicity of a particle is sometimes referred to as ‘right-handed’, while the negative helicity is 
designated as ‘left-handed’. This may be confusing since the term ‘handedness’ is also used to describe chirality. 

165 Chirality is a concept that only exists for spinors. More precisely, it only exists for representations (  ,   ) of the 
Lorentz group with   ≠    (c.f. Example 7.5). In mathematical terms, chirality can be described as an eigenstate of the 
  matrix. Please refer to Section 5.8 for a more detailed explanation. 

166 Massive Dirac particles exhibit a coupling between left-chiral and right-chiral wave functions, which is determined 
by the mass associated with the particles in question. The implication is that such particles oscillate between left- and 
right-chiral states at a rate dependent on their mass. This oscillation is caused by interaction with the Higgs field. 
There is a correlation between the frequency of interaction with the Higgs field and the mass of the fermion; the 
higher the mass, the greater the frequency of Higgs field interaction, and the more frequent is the switching of 
chirality ([L1], [S0]). Please refer to section 5.8 for further details. 
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a mirror reflection by changing a frame of reference, which merely entails a different velocity 
and direction of motion. It is evident that helicity and chirality are two distinct concepts. 

Nevertheless, at exceedingly high speeds (i.e. in the relativistic limit    ), a right-chiral 
fermion is associated with a positive helicity (spin aligned with the direction of propagation), 
while a left-chiral fermion is associated with a negative helicity at the same velocity. 
Consequently, a massless fermion with spin up in the direction of motion has a fixed positive 
helicity and a fixed right-chirality. Similarly, a massless fermion with spin down in the direction 
of motion has a fixed negative helicity and a fixed left-chirality. This implies that there are only 
two permitted configurations of helicity and chirality ([S0]): 

                  

In other words, right-chirality is not possible in a negative helicity situation and left-chirality is 
not possible in a positive helicity situation. 

Summarised: helicity and chirality are equivalent (167) for massless fermions (or in the 
relativistic limit    ), but are, in general, not the same. (168). 

5.8. The Dirac equation (169) 

In 1928, P.A.M. Dirac tried to solve the problem of negative-energy solutions by looking for a 
wave equation that was first order in time-derivatives, the hope being that one could then obtain 

a relation of the form   =              directly, without encountering negative energy states 
(170). Dirac realized that one could write an equation that was linear in both time and space 
derivatives of the form ([A1]) 

(5.19)             i/t = [ i(α /x + α /y + α /z) +   ]  
                                  = ( i  +   ). 

What are the   = (α , α , α ) and  ? To solve the requirement   =             , Dirac 
demanded that his wave function  satisfies a KG-type condition (5.15). Then one can show that 

                                                             

167 It means that in the massless case, the left-chiral and right-chiral eigenstates of the chirality operator are also 
helicity eigenstates, with the same eigenvalues. 

168 For further details, please refer to Section 5.8. 

169 A story told of Dirac, who was known for his eccentricity, is that when he first met Richard Feynman in 1946, he 
said after a long silence "I have an equation. Do you have one too?"  Feynman didn't. Dirac walked away after a silence.  

Within a few years  Feynman’s power as an analyst and intuitionist made him  in the eyes of many  the finest 
theoretician in  merica. Wigner agreed with judgement: “Feynman is a second Dirac, only this time human.”  [F ] . 

The Dirac equation (5.20) appears on the floor of Westminster Abbey on the plaque commemorating Paul Dirac's life, 
which was unveiled on 13 November 1995. 

170 A conversation in 1928  
Bohr : What are you working on?  
Dirac : I am trying to get a relativistic theory of the electron.  
Bohr : But Klein has already solved that problem.  
Dirac  (silently) disagreed. 
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the  and   cannot be ordinary, commuting quantities. Instead they must satisfy the following 
anticommutation relations (171) 

α   +   α  = 0 for   = 1, 2, 3 and α α  +  α α  = 0 for     = 1, 2, 3,     . 

In addition, it is required that α 
  =    = 1. Now let us multiply the Dirac equation (5.19) with   

and due to    = 1 we get  

                                                             [i( /t +   ) –  ] = 0.  

Let us denote 
 

 :=  ,  
 
 :=  α , (  = 1, 2, 3). Then we can write the Dirac equation in the form 

(5.20)                                    (i
 
     ) = 0, (172)  

where the coefficients 
 

 satisfy the following relations 

(5.21)                        
 
   = 1,  

 
   =  1,   

 

 

 + 
 

 

 = 0  

for     with ,   = 0, 1, 2, 3 and   = 1, 2, 3. ([A1]) 

Dirac, who had just then been intensely involved with working out the foundations of 
Heisenberg's matrix mechanics, immediately understood that these conditions could be met if 

 

, 
 

, 
 

 and 
 

 are matrices, acting on a wave function which had several components arranged 

as a column vector ([A1]). It turns out that the smallest possible dimension of the matrices for 
which the Dirac conditions can be satisfied is 4×4. One conventional choice of the ’s is 

(5.22)                 
 

 =  
I 0 

0  I 
             

 
 =  

0   

  0 
 , 

where we have written these 4×4 matrices in  ×  ‘block diagonal’ form  I  is the 22 identity 
matrix, 0  is the 22 null matrix, and    are the so-called 22 Pauli spin matrices. The Pauli 
matrices are defined by ([A1]) 

(5.23)                                     =  
0  
 0

            =  
0  i
i 0

            =  
 0
0   

 . 

Let us write the gamma matrices (173) in the Dirac representation explicitly (174): 

                                                =  

 0 0 0
0  0 0
0 0   0
0 0 0   

         =  

0 0 0  
0 0  0
0   0 0

  0 0 0

      

(5.24) 

                                                =  

0 0 0  i
0 0 i 0
0 i 0 0
 i 0 0 0

            =  

0 0  0
0 0 0   

  0 0 0
0  0 0

 . 

                                                             

171 These conditions are also required in order to get all the cross-terms such as ∂x∂y to vanish which in turn is 
necessary to get a differential equation in first order. 

172 Recall that  
 =   

 
   =   /t +   /x +   /y +   /z.  

173 Pauli matrices and Dirac matrices are representations of Clifford algebra. A Clifford algebra combines and 
generalizes the scalar product and the vector product. Pauli matrices define two-dimensional representation of the 
Clifford algebra of Euclidean space while the Dirac matrices define four-dimensional representation of the Clifford 
algebra of Minkowski space ([R4]). Clifford   878  introduced his ‘geometric algebras’ as a generali ation of 
Grassmann algebras, complex numbers, and quaternions.  
William Kingdon Clifford (1845 – 1879) was an English mathematician and philosopher. Hermann Günther 
Grassmann (1809 – 1877) was a German polymath, known in his day as a linguist and now also as a mathematician. 

174 Please note that despite the µ subscript, the 4-tuple               is not a four vector. Gamma matrices are 
constant matrices that remain invariant under a Lorentz transformation. 
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The conditions (5.21) are usually written in the form 

(5.25)                                                             {  ,   } = 2  I ,  

where ,   = 0, 1, 2, 3, and 

(5.26)                                                            {A, B} := AB + BA  

is the anticommutator of two matrices,    is the (,  )-element of the Minkowski metric (see 
Section 3.1) and I  is the 4×4 identity matrix. 

Another common choice of the ’s is the Weyl or chiral representation, in which    
(         remains the same but    is different 

                                                                
 

 =  
0 I 
I 0 

 . 

It should be noted that physical results do not depend on the particular 4×4 representation 
– everything is in the commutation relations. Furthermore, the fact that the Dirac matrices are 4-
dimensional is independent of the fact that spacetime is 4-dimensional. The Dirac matrices act 
on spin space, rather than on spacetime. 

Since the Dirac equation involves 4×4 matrices, it is clear that we must interpret the Dirac 
wave function  as a four-component column vector – the so-called Dirac spinor  (or 4-spinor  
or, sometimes, bispinor):  

(5.27)                                                                = 


 


 


 


 

 . 

The four components of  can be interpreted as a description of both a spin-½ particle and its 
antiparticle. The upper two components are associated with the particle, while the lower 
components are linked to the antiparticle. Each pair of components (upper and lower) can be 
further decomposed into spin-up and spin-down states. 

However, despite of four components,  is not a 4-vector since it transforms in a special way 
under Lorentz transformations. Notice that the Dirac equation (5.20) is simply four coupled 
differential equations, describing a wave function  with four components. 

Indeed, we have  

          
  =  

 0 0 0
0  0 0
0 0   0
0 0 0   

 /t +  

0 0 0  
0 0  0
0   0 0

  0 0 0

 /x +  

0 0 0  i
0 0 i 0
0 i 0 0
 i 0 0 0

 /y +  

                   +  

0 0  0
0 0 0   

  0 0 0
0  0 0

 /z = 

 
 
 
 
 
 
 

 

  
 0

 

  
 

 

  
 i
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 i

 

  
 

 

  
0

 
 

  
 i 

 

  

 

  
0  

 

   
 
 
 
 
 
 

. 

Now we can write out the Dirac equation (i  
     ) = (i  

     I )  = 0  in full 
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
 


 


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
 


 


 


 

   

0
0
0
0

 . 

This amounts to the following four equations: 

(i
 

  
  ) 

 
 + i

 

  


 
    i

 

  
 

 

  
 

 
 = 0,            (i

 

  
  ) 

 
 + i

 

  
 

 

  
 

 
  i

 

  


 
 = 0, 

 i
 

  


 
 + ( i

 

  
 

 

  
) 

 
    i

 

  
   

 
 = 0, ( i

 

  
 

 

  
)

 
 + i

 

  


 
     i

 

  
   

 
 = 0. 

A fundamental spinor, often called Weyl spinor, has two components (cf. Section 5.7). Thus 
they see coordinate transformations as 22 matrices. There are two kinds of fundamental spinor 


 
 and 

 
 both of which are two-component objects but behave slightly different under 

coordinate transformations (175). They change into one another under a parity transformation 
(x, y, z)    x   y     . Consequently  just one of the Weyl spinors is not sufficient to guarantee 
parity preservation   we need both of them working together. This is why it is conventional 
(and convenient) to split the Dirac spinor (5.27) into two fundamental spinors L and R (176): 

 5. 7’)                                                                 =  


 


 
 , 

where 
 

 and 
 

 are, themselves, two-component column matrices.  

Dirac spinors are convenient if we want to make sure that our theory remains valid no 
matter how we mirror our coordinate axis. Another reason is that one always needs to use a left-
chiral spinor and a right-chiral spinor to describe a physical particle like an electron (or a 
quark). The Dirac spinor applies to massive fermions, all of which are known to obey parity 
conservation (177). 

Let us provide a more precise definition of the terms left-chiral’ and right-chiral as they 
relate to wave functions. In order to achieve this, the chirality operator is defined as follows: 

                                                             

175 They are so-called chirality  spinors:    is known as left-chiral spinor  and   as right-chiral spinor.  The meaning 

of the adjective ‘chiral’ stems from a physical property known as chirality  (see Section 5.7). In the mathematical 
language the chirality is a label associated with a representation of the Lorentz group ([S2]).  
These spinors are usually called left-handed  and right-handed, respectively. However, this can be misleading because 
these terms are also used to describe a concept called helicity, which is in general not the same as chirality. 

176 It is convenient to introduce this notation for exactly the same reasons that we introduced 4-vectors. Time and 
space coordinates of 4-vectors are mixed under Lorentz transformations. Similarly, left-chiral and right-chiral spinors 
are mixed under coordinate transformations. However, for 4-vectors the mixing happens under boost. In contrast, the 
mixing of left-chiral and right-chiral spinors happens when we mirror a system. In general, transformations that 
mirror coordinate axes are known as parity transformations. The key observation is that if we consider a 
transformation law for a right-chiral spinor in a mirrored coordinate system, we find exactly the transformation law 
of a left-chiral spinor ([S2]). 

177 It turns out that parity is not conserved in weak interactions, which involve neutrinos. There are only left-chiral 
neutrinos (and right-chiral antineutrinos)  see Section 7.4 for further details. 
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                                                                       
 
:   i

 

 

 

 

.  

Although 
 

 uses the letter gamma, it is not one of the gamma matrices ([W11)). In the chiral 

representation 
 

 is given by 

                                                                       
 

 =  
 I 0 

0 I 
 . 

In the Dirac representation, the matrix 
 

 differs from its chiral representation counterpart. 

Since  
 
    I , the eigenvalues of 

 
 are   . A wave function 

 
 is an eigenstate of 

 
 with 

eigenvalue    (178). A right-chiral wave function 
 

 is then an eigenstate with eigenvalue   .  

The Dirac equation thus predicts the existence of two types of Dirac wave function: left-
chiral functions with chirality    and right-chiral functions with chirality   . In order to extract 
the left- and right-chiral parts of a given wave function, one may define projection operators as 
follows ([L1]) 

                                                               := 
      

 
,          := 

      

 
. 

   and    project out the left- and right-chiral components of a spinor : 

                                                                =  


 

0
 ,       =  

0


 
 . 

The weak    couplings contain the projection   , and thus only interact with left-chiral 
particles or right-chiral antiparticles (for further details, please see Section 7.4). 

As previously stated in Section 5.7, massive fermions exhibit a coupling between left- and 
right-chiral wave functions, which is dependent on the mass associated with the particles in 
question. Let us examine this phenomenon in greater detail. 

The Dirac equation can be expressed in the form of two distinct equations ([L1]) 

(5.28)                            I i
 

  
    

 
 =  

 
 ,      I i

 

  
    

 
 =  

 
, 

where    = (  ,   ,   ) and    (         are three Dirac matrices. 

Equations 5.28 demonstrate that massive fermions comprise both left- and right-chiral wave 
functions, which are coupled by the particle's mass. We can think of massive Dirac particles 
oscillating back and forth in time between left- and right-chiral at a rate determined by their 
mass. This can be most readily observed by considering massive Dirac particles at rest, where 
we have ([L1]) 

                                            I i
 

  


 
 =  

 
    and     I i

 

  


 
 =  

 
. 

In the particular case of a massless particle, the equations (5.28) can be reduced to the 
following: 

 5. 8’                              I i
 

  
    

 
 = 0  ,      I i

 

  
    

 
 = 0 . 

This implies that a four-component eigenstate  can splits into two two-component pieces, 
 

 

and 
 

, which are not mixed up by the equations. ([L1]) 

The degree of left- and right-chirality superposition in a Dirac bispinor depends on the 
energy-to-mass ratio. Consequently, chiral oscillations are typically not relevant for the 
characterisation of relativistic particles. Nevertheless, they are of considerable importance in the 
description of particles in dynamical regimes where the momentum is comparable to (or smaller 
than) the mass. Given that 

 
 and 

 
 are eigenstates of the massless fermion, it can be 

                                                             

178 Please refer to Section 5.9 for details of the notation used. 
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concluded that a free and massless left-chiral particle cannot undergo a transformation into a 
right-chiral particle. 

It can be demonstrated ([F14], [L1]) that the massless states 
 

 and 
 

, which are defined 

as being chirality eigenstates, are also eigenstates of the helicity operator 

                                                             
 

    
 
   0 

0   
 , 

where   is the momentum 3-vector. To be more precise, the left- and right-chirality eigenstates 
are also helicity eigenstates, with the same eigenvalues. We therefore have the following: 

               

In conclusion, the concepts of chirality and helicity, despite being represented by different 
operators, convey a similar message. It is important to note, however, that helicity and chirality 
are equivalent for massless particles (or when the rest mass can be neglected, e.g. at very high 
velocity v  c), whereas they are generally not the same for particles with mass. It is evident that 
helicity provides information regarding the alignment of a particle's spin and momentum, 
namely whether they are parallel or antiparallel. Consequently, helicity depends on the frame of 
reference employed for its measurement. In the case of massive particles, it is possible to 
describe a particle with positive helicity and then to apply a boost to a frame where the particle's 
momentum is reversed, yet its spin remains unaltered. This results in a reversal of the helicity. 

The Dirac equation should be covariant under Lorentz transformations – that is, it must have 
the same form in the two different frames. In the case of the Klein-Gordon (KG) equation, this 
requirement is taken care of, almost automatically, by the notation. The case of the Dirac 
equation is more complicated, because (unlike the KG ) the wave function has more than one 
component, corresponding to the fact that it describes a spinor field related to a spin-½ particle. 
However, using the matrices    and Dirac spinors one can construct invariants     and 

     
 , where   denotes the Hermitian conjugate row vector of the column vector (5.27) 

(179), i.e.  

                                                      := [
 
   

 
   

 
   

 
 ] =     .   

It is conventional to introduce the adjoint spinor  

                                        :=     = [
 
   

 
   

 
   

 
 ]   = [

 
   

 
    

 
    

 
 ] .  

Now we have everything we need to construct a Lorentz invariant Lagrangian density 

(5.29)                                                         
    

 =  (i  
     ). 

Putting this Lagrangian density into the Euler-Lagrange equation one gets the Dirac equation 
(5.20) which is then Lorentz covariant. Notice that the mass term    is invariant under U(1) 
gauge transformations.  

Having set up the relativistic spin-½ free-particle wave equations (5.20) we are now in a 
position to use the machinery developed in Section 5.4 in order to include electromagnetic 
interactions. All we have to do is make the replacement ([A1]) 

                                                              =   + i     

                                                             

179 The symbol ‘†’  called dagger, denotes transposition plus complex conjugation. 
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for a particle of charge  :     

                                                           (i   
    ) = 0. 

The Lagrangian density is in this case given by 

(5.30)                 
  =        

    
 +    

    
 +      =  (i  

     )   

   
     

          
 . 

The second term with the field     describes the free electromagnetic field, in particular free 

photons. As we know,     is expressed by derivatives of the vector field   (x ) – see (4.7). The 

interaction term      :=        
  is referred to as a fermion-boson coupling, or, more 

specifically, a fermion-photon interaction.   

This is a Lagrangian density, for example, for an electron and a massless spin-1 boson 
(photon). In quantum electrodynamics QED every electron is thought to be a localized excitation 
of the electron (spinor) field (x ), while every photon is considered to be an excitation of the 

photon (vector) field   (x ), which is the quantum field-theoretic counterpart of the classical 

four-potential. It is a vector field because photons have spin one. These fields interact and the 
interactions are quantified by the Lagrangian density      (180). The Lagrangian density of QED is 

thus     
  :=       

  =  (i   
     )   

   
     

  , which essentially determines everything 

about the theory (181). The covariant derivative    encodes the interaction between the two 

fields    and , and the 'strength' of the interaction is given by the electric charge   (182). It is 

remarkable that this simple Lagrangian can account for a wide range of phenomena, spanning 
from those observed at the macroscopic scale down to a length scale of approximately  0⁻¹³ cm.  

Now let us see whether the Dirac equation leads to an acceptable probability current ([A1]). 
Notice that the quantity 

(5.31)                                       ρ      :=  (t,  )(t,  ) =   
 
   

    

is positive-definite. From the Dirac equation and its Hermitian conjugate one can derive a 
conservation law of the required form: 

                                                                        =  ρ     /t. 

The probability current density is  

                                                                             :=    

representing a 3-vector with components (  ,   ,   ) = (   ,    ,    ), 
where  = (α , α , α ) is the quantity from (5.19). Thus the problem with the negative 
probability density is solved, because ρ      is positive-definite. ([A1]). The four-vector density 
current can be written as 

 5.  ’                                            j        := (ρ     ,       ) =    . 

                                                             

180 More precisely, the interaction term of QED contains three fields (particles): electron and positron (x ), which is 

the bispinor Dirac field, and photon   (x ). In more general terms, the electrodynamics of a spinor field  

representing a charged fermion is obtained coupling    to the current  . ([M1]) 

181 That is,     
  consists of three parts: the kinetic energy of the electromagnetic field (free photons)    

    
, the 

kinetic energy of the electron field (free electrons)    
    

, and the potential energy of their coupling      .  
Or, as Feynman once described it in plain English: a photon goes from place to place; an electron goes from place to 
place; an electron emits or absorbs a photon ([T5]). 

182 For a single electron      , where   is the elementary charge, while e.g. for an up-quark        . In case that 
the field  represents an uncharged particle, we have   = 0 in (5.30). Then the Lagrangian (5.30) falls into two pieces 
that have nothing to do with each other. The first term describes the free Dirac field for a particle with mass  . The 
corresponding field equation is just the Dirac equation (5.20). ([E1]) 
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It turns out, however, that the Dirac equation leads to the same problem as in the case of the 
Klein-Gordon equation in that for a given value of  , two values of   are allowed: E = ±(   + 
 2)1/2  i.e. positive and negative energy solutions are still admitted. 

Dirac's idea to resolve the dilemma with the negative energy solutions was to introduce a 
concept where all the states with negative energy are filled with electrons. The completely filled 
negative-energy states is called the Dirac sea, which is invisible by definition. The Pauli exclusion 
principle then forbids any positive energy electrons from falling into these lower energy levels. If 
one negative energy electron is absent from the ‘Dirac sea’  we have a ‘hole’ relative to the 
normal vacuum. An electron with positive energy may fall into a hole, which would be observed 
as a mutual elimination and annihilation of both particles. Conversely, if an unobservable 
negative energy electron gains sufficient energy to jump to a positive state, a pair of an 
observable electron and a hole is created. Accordingly, Dirac's theory postulated the existence of 
a process whereby material particles could be created and annihilated simultaneously. ([K3]) 

Dirac was inclined to associate this particle with the proton. Of course, the proton mass is 
approximately 1836 times greater than that of the electron. Nevertheless, Dirac maintained the 
possibility of deriving the additional mass from the interaction between the hole and the sea, 
given that the hole moves in the medium of negative energy electrons. ([K3]) 

The challenges associated with the hole theory, or more specifically, the proposition that the 
hole is identical to the proton, were becoming more pronounced. The observed mass difference 
could not be reconciled with the theoretical predictions. In fact, there were compelling 
arguments in favour of mass equality. Hermann Weyl investigated the mathematical 
transformations of the theory and reached the conclusion that the hole mass had to be precisely 
equal to the electron mass. He postulated the existence of a positively charged electron, although 
he acknowledged that it had not been observed in nature. ([K3]) 

In May 1931, Dirac submitted a paper in which he discussed two unknown particles. In 
regard to the difficulties that arose in his hole theory with the proton mass, he abandoned the 
hypothesis that holes were protons, proposing instead that the theory necessitates the existence 
of a light positively charged particle, the anti-electron. ([K3]) 

The first announcement of a new positively charged light particle was made by Carl 
Anderson (183) in September 1932. He termed the particle a positron. The view that the new 
particle is nothing other than the anti-electron predicted by Dirac was rapidly accepted as a 
valid hypothesis. ([K3]) 

Despite of the experimental evidence for the positron, Dirac's hole theory encountered 
resistance. In regard to this discovery, Bohr asserted that even if it were proven to be accurate, it 
would not be consistent with Dirac's theory of holes. In November 1933, Fock published a paper 
in which he presented a comprehensive and symmetrical analysis of free electrons and 
positrons, avoiding the use of negative-energy particles. This approach was first proposed by 
Heisenberg in 1931. This formulation precludes the existence of negative-energy states, which 
are identified as positive-energy positrons. Therefore, the infinite sea of negative-energy 
electrons is superfluous. ([V1]) 

 ince Dirac’s solution was based on the Pauli exclusion principle  so a few words about it are 
in order here. In the 1920s it became obvious that the Niels Bohr's model of the atom, proposed 
in 1913, was inadequate to explain the electron shell structure of an atom. Bohr suggested that 
electrons could occupy only certain quantized orbitals (designated as shells), but there seemed 
to be no reason why all the electrons in an atom did not simply crowd into the one lowest energy 
state. There was no convincing explanation of the structure of the periodic table.  

Wolfgang Pauli in 1924 suggested that the pattern in the population of atomic energy levels 
by electrons could be understood adding a fourth quantum number to the three that were then 
used to describe an electron’s quantum state. The first three quantum numbers made sense 

                                                             

183 Carl Anderson (1905 – 1991) was an American physicist. He received 1936 Nobel Prize in Physics for his 
discovery of the positron. 
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physically  since they related to the electron’s motion around the nucleus. Pauli called his new 
quantum property of the electron a “two-valuedness not describable classically”. Then in 
January 1925, he announced the exclusion principle, stating that no two electrons in an atom can 
occupy a state with the same values for the four quantum numbers. Each electron had to be in its 
own unique state. Other possibilities are excluded. ([A2]) 

This new quantum property was understood a little later as due to the spin of the electron 
(see Section 5.7). The exclusion principle answered a question that had remained obscure in the 
old atomic theory of Bohr and Sommerfeld: why do not all the electrons in atoms fall down into 
the shell of lowest energy? Subsequently Pauli's exclusion principle was incorporated into 
statistical mechanics by Fermi and Dirac (184) and for this reason particles obeying the exclusion 
principle are generally called 'fermions' (cf. Chapter 2) ([W1]). On the basis of relativistic 
quantum field theory only, Fierz (185) (1939) and Pauli (1940) proved that all particles are 
either bosons or fermions ([E1]). 

Applying the exclusion principle proved possible to obtain sensible results from the Dirac 
equation and its negative energy solutions. It is clear, however, that the theory is no longer really 
a ‘single-particle’ theory. For example, if we excite one negative energy electron to a positive 
energy state, we have in the final state a positive energy electron plus a positive energy positron 
‘hole’ in the vacuum: this corresponds physically to the process of e e  pair creation. Thus this 
way of dealing with the negative energy problem for fermions leads us directly to the need for a 
quantum field theory ([A1]). In QED,  becomes an operator capable of creating or annihilation 
of e e  pairs. 

The positron e  or anti-electron is the antiparticle of the electron e . The positron has an 
electric charge of +1e, a spin of  

 
 (the same as the electron), and has the same mass as the 

electron. Fermions (like electron) that are not their own antiparticles are referred to as Dirac 
fermions. The term is sometimes used in opposition to a Majorana fermion, which is a fermion 
that is its own antiparticle. Such fermions were hypothesised by Ettore Majorana (186) in 1937. 
Except for the neutrino, all of the Standard Model fermions are known to behave as Dirac 
fermions at low energy (after electroweak symmetry breaking), and none are Majorana 
fermions. The nature of the neutrinos is not settled  they may be either Dirac or Majorana 
fermions ([W11]). (187) 

5.9. An interlude on the quantum formalism (188) 

This section provides an overview of the quantum formalism. It is a framework that permits the 
mathematical description of quantum systems. The initial fundamental components are new 
entities, designated as ‘ket’ and ‘bra’ used to describe quantum states of the system under 

                                                             

184 In late 1925, Jordan submitted a manuscript to Born with a request for publication in the Zeitschrift für Physik, 
which was then under Born's editorship. Born then went on a long trip to the United States and did not remember the 
paper he had put in his suitcase. In the meantime, Fermi-Dirac statistics had been discovered independently by Fermi 
and Dirac. But Jordan was the first. It is worth noting that Jordan referred to his discovery as Pauli statistics ([E1]). 
Ernst Pascual Jordan (1902–1980) was a German theoretical and mathematical physicist who made significant 
contributions to quantum mechanics and quantum field theory. 

185 Markus Eduard Fierz (1912–2006) was a Swiss physicist. 

186 Ettore Majorana (1906 – probably died after 1959) was an Italian theoretical physicist who worked on neutrino 
masses. He was very young when he joined Enrico Fermi's team in Rome as one of the ‘ ia Panisperna boys’  who took 
their name from the street address of their laboratory. On 25 March 1938, he disappeared under mysterious 
circumstances while going by ship from Palermo to Naples.  Despite several investigations, his body was not found 
and his fate is still uncertain. Italian philosopher Giorgio Agamben published in 2016 a book that examines the case of 
Majorana's disappearance ([W11]). 

187 Majorana suggested that neutral spin- 

 
 particles can be described by a real-valued wave equation (the Majorana 

equation), and would therefore be identical to their antiparticle since the wave functions of particle and antiparticle 
are related by complex conjugation. 

188 The content of this section is to a great extent borrowed from the book [S16] that I highly recommend to the reader 
for further details. This book is the ultimate practical introduction to quantum mechanics. 
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examination. Furthermore, it is necessary to define operators that yield, for instance, the 
momentum of the system when they are applied to a given ket. As will be demonstrated 
subsequently, the measured values of physical quantities (e.g. momentum or position) equate to 
the eigenvalues of the corresponding operators. ([S2a]) 

Quantum mechanics represents such a radical departure from classical physics that the very 
notion of the state of a particle must be changed. The space of states of a quantum system is not 
merely a collection of potential outcomes; rather, it can be conceptualised as a vector space. A 
mathematical vector space is an abstract construction that may or may not have any relation to 
the physical space we perceive. The number of dimensions may vary from one to infinity, and 
the components may be real numbers, complex numbers, or even more general entities. 

The vector spaces used to define quantum mechanical states are called Hilbert spaces (189). 
When you come across the term Hilbert space in quantum mechanics, it refers to the space of 
states. A Hilbert space may have either a finite or an infinite number of dimensions. 

The simplest example of a Hilbert space is       ×  × …×   (n-times), where   denotes 
the set of complex numbers, with the usual inner product (also called Hermitian product) 

                                                        :=     =  (  )*  =    
   

 
   , 

where   = (  , . . . ,   ),   = (  , . . . ,   )     and   
  denotes the complex conjugate of   . Notice 

that       =        since        =    +    and       = z for any complex numbers z and w. 

The space    is a finite dimensional Hilbert space because it possesses a finite basis which is for 
example        

  where  

                                                                   = (1, 0, . . . , 0, 0, 0, . . . , 0),  
                                                                   = (0, 1, . . . , 0, 0, 0, . . . , 0),  
                                                                ... 
                                                                   = (0, 0, . . . , 0, 1, 0, . . . , 0),  
                                                                ... 
                                                                   = (0, 0, . . . , 0, 0, 0, . . . , 1).   

Every vector   = (  , . . . ,   )     can be written as a linear combination of the elements of the 
basis 

(5.32)                                                                     =    
 
     . 

Notice that  

(5.33)                                                                           =   ,  

for   = 1, 2, . . . , n (190). This is analogous to how we expand an arbitrary 3-vector   = (  ,   ,   )  
in the terms of basis vectors  

                                                             

189 Hilbert spaces are named after German mathematician David Hilbert (1862 – 1943), who studied them in the 
context of integral equations. A Hilbert space   is a (complex) vector space that is equipped with an inner product. 

This is a map      :  ×      such that for u, v, w    and λ   , (1)       =      *; (2)        =       ; (3) 
        =       +      ; (4)        0 and       = 0 if and only if u = 0. Remainder:      * denotes the complex 
conjugate of      .  Note that (1) and (2) imply         =         so that      is antilinear in its first (leftmost) 
argument.  
     In the maths literature, the inner product is often taken to be linear in the left entry and antilinear in the right. We 
will follow the QM literature, which always uses the opposite convention to the maths literature. 

Using this inner product we define the norm of a vector u    to be ||u || =        which is assumed to be complete.   
     Thus every Hilbert space is a Banach space. Moreover,   is in QM assumed to be separable, i.e. it has a countable 
dense subset. There are several important reasons for this assumption: Firstly, the separability of the Hilbert space 
ensures that the set of possible measurement outcomes is countable, which aligns with the physical reality of discrete 
measurement results. Secondly, the separability condition guarantees that the probability measures used in quantum 
mechanics are well-defined and can be normalized, ensuring a consistent probabilistic interpretation of quantum 
states. 
190 The basis        

  is orthonormal. It means that it has the properties:         = 1 and         = 0 for j  k. 

Mathematically, basis vectors are not required to be orthonormal. However, in quantum mechanics they generally are. 
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                                                       = (1, 0, 0),    = (0, 1, 0),    = (0, 0, 1). 

In general, the precise nature of the Hilbert space depends on the specific quantum system 
under consideration. To illustrate, the Hilbert space for the spin of a single particle is the space 
C² of two-dimensional complex vectors (for further details, see Example 5.2 below). An 
additional example is the space of complex square-integrable (191) functions   (  , which is used 
for the description of a particle's position and momentum. The question thus arises as to which 
Hilbert space is the correct one to use in order to describe a particular system under 
consideration. Ultimately, this question can only be determined by carrying out an experiment. 

In quantum mechanics everything we could want to know about a physical system is 
encoded in a vector (192) in a Hilbert space  . From now on, in this section we will use a 
notation for Hilbert spaces that was introduced by Dirac and is standard throughout the 
theoretical physics literature. Dirac denotes an element of   as     , where the symbol      is 
known as a ket ([D2]). An element of the dual space, that is essentially the complex conjugate 
vector space, is written      and the symbol      is called a bra. It is often convenient to think of      
as represented by a column vector (193) 

                                                                          

  

  

…  
  

  , 

and      by a row vector with the components being complex conjugates  

                                                                     = [  
   

 …   
 ].  

Thus the relation between the ket      and the bra      is 

                                                               :=       = (     )* (194) 

The inner product between two states      and      is then written       forming a bra-ket or 
bracket.  Of course the components    and    depend on the basis of  . The inner product 

      however, is independent of the choice of basis. 

In quantum mechanics, two state vectors      and       , where   is any nonzero complex 
number, have exactly the same physical significance (195). For this reason, it is sometimes helpful 
to say that the physical state corresponds not to a particular vector in the Hilbert space, but to 
the ray, or one-dimensional subspace, defined by the set of all the complex multiples of a 
particular vector. Consequently, one can always choose    (recall that      is not the zero vector) 
in such a way that the      corresponding to a particular physical situation is normalised,       
= 1 or ||    = 1, where the norm ||    of a state      is the square root of      , i.e.  

                                                        ||   2 =        =    
   

 
   . 

Two states      and      are distinguishable if they are orthogonal, i.e. if their inner product is 
zero:       = 0. This is the analogue of saying that two 3-vectors are orthogonal if their dot 
product is zero. 

                                                             

191 In mathematics, a square-integrable function, also called a quadratically integrable function, is a real- or complex-
valued measurable function for which the integral of the square of the absolute value is finite. 
192 This vector is not the zero vector, since the zero vector never represents any physical situation. 
193 If   is finite-dimensional. 
194 More exactly, the bra vector is a vector in the dual space   , i.e. in the vector space of all continuous linear 
functionals f :     . We can however identify   with    due to the Riesz representation theorem. This is special 
about Hilbert spaces among various other infinite dimensional vector spaces, and makes them especially easy to 
handle. 
195 Avoid, however, the following mistake. Just because vectors      and        have the same physical interpretation 
does not mean that one can multiply a vector inside some formula by a constant without changing the physics.  An 
overall constant makes no difference, but changing the relative magnitudes or phases of two kets for example in a sum 
can make a difference. 
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Although for many purposes it is convenient to use normalised vectors, one should not get 
the mistaken impression that any vector representing a quantum system must be normalised. 
There are circumstances in which it is more convenient not to use normalised vectors. 

Normalised vectors can always be multiplied by a phase factor, a complex number of the 
form     where  is real, without changing the normalisation or the physical interpretation, so 
normalisation by itself does not single out any unique vector representing a particular physical 
state. 

Example 5.2. Let us see how to represent spin states of a particle, say an electron, using state 
vectors. Electron has, besides spin, a magnetic momentum proportional to the spin. So, if we 
measure the magnetic momentum, we get some idea about the spin. As we know, spin is 
quantised, and can only take on discrete values.  The spin angular momentum of an electron, 
measured along any particular direction, can only take on the values  /2 or   /2. Since we 

assume   = 1, we have two spin values:  
 

 
 and  

 

 
. There are no intermediate values. 

Let us begin by labelling the possible spin states along the three coordinate axes. A physical 
picture is to think of the spin-½ particle as having an angular momentum vector pointing in a 
random direction in space, but subject to the constraint that a particular component of the 
angular momentum, say    along the z-axis, is described as spin up or spin down, based on the 
magnetic momentum pointing up or down, respectively. Let us denote these states by ket 
vectors      and     . One can prepare an electron with the spin in a certain direction and measure 
it using a Stern-Gerlach device. Thus, when our detector is oriented along the z-axis and 

registers  
 

 
, the state      has been prepared ([W11]): 

 

So we have a very simple mathematical representation: all possible spin states can be 
represented in a two-dimensional vector space   . Let       and       be two basis vectors in    
and assume that both of them are normalised (i.e.          =         = 1) and that they are 
mutually orthogonal (i.e.          =         = 0). For example, we can take (196) 

                                               
  i0
0  i0

   
 
0
    and        :  

0  i0
  i0

   
0
 
 . 

The usual convention is 

                                                             

196 Notice that these vectors are actually spinors - see Section 5.7. 
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                                                       =          =  
 

 
,            =          =  

 

 
. 

Then we can express any spin state as a linear superposition of      and     . And each (non-zero) 
vector in this vector space represents a possible state of the electron spin. We are not discussing 
other degrees of freedom of the electron, such as its position, momentum, or energy. 

Denoting by      a generic spin state we can write this linear superposition as an equation 

(5.34)                                                               =   
     +   

    , 

where    and    are the components of      along the basis directions      and     . Applying 
(5.33), we can identify the components of      as 

                                                               =           and         =      . 

What is the physical significance of these equations? The vector      can represent any state 
of the spin, prepared in any manner. The components    and    are complex numbers and by 
themselves have no experimental meaning, but their magnitudes do. For example, |  |2 =   

    
means the following: given that the spin has been prepared in the state     , and that the detector 
is oriented along the z-axis, the quantity |  |2 is the probability that the spin would be measured 

as    =  
 

 
. In other words, it is the probability of the spin being up if measured along the z-axis. 

The important point is that before the measurement the vector      represents the potential 
possibilities but not the actual values of our measurements. Since      and      are mutually 
orthogonal, we have    d  =    u  = 0. The physical meaning of this is that, if the spin is 
prepared up, then the probability to detect it down is zero, and vice versa. It implies that two 
orthogonal states are physically distinct and mutually exclusive. And this idea applies to all 
quantum systems, not just spin. 

The second important point is that the total probability must equal to unity, so we must have 

                                                   |  |2 + |  |2 =   
    +   

    = 1. 

This is equivalent to the condition that the vector      is normalised:       = 1.  

Now let us consider the spin component    along x-axis. If the apparatus is oriented along 

the x-axis and registers  
 

 
, the state      has been prepared. We will call it spin left. The second 

possible state that can be prepared corresponds to the state     , which we call spin right. 
According to (5.34) we can represent any spin state as a linear combination of the basis vectors 
     and     . How can we represent e.g. the vector      in this basis? It turns out that if our 
apparatus initially prepares     , and is then rotated to measure   , there will be equal 
probabilities for up and down ([W11]): 
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Thus,   
    =   

    = 
 

 
 and a vector      that satisfies this rule is 

                                                                        = 
 

  
     + 

 

  
    . 

One can show that the vector      has the following representation in the basis      and      

                                                                        = 
 

  
       

 

  
    . 

Finally, the vectors representing spins oriented in and out along the y axis are    

                                                = 
 

  
     + 

 

  
    ,           = 

 

  
        

 

  
    . 

Notice that two of the components in the above equations contain i (i    ), i.e. they are 
imaginary. Given our framework for spin states, there is no way around them. The need for 
complex numbers is a general feature of quantum mechanics. 

The last experiment can be interpreted to exhibit the uncertainty principle: since the angular 
momentum cannot be measured on two perpendicular directions at the same time, the 
measurement of the angular momentum on one direction destroys the previous determination 
of the angular momentum in the other direction. 

We have seen in the example above how states in quantum mechanics can be mathematically 
described as vectors in a vector space. The next step in quantum mechanics is to introduce the 
idea of an observable. An observable could also be called a measurable. It is a thing that you can 
measure with a suitable apparatus. For example, measuring the components of a spin,   ,    and 

  . Or we can make measurements of the coordinates of a particle, the energy or momentum. 
These are examples of observables.   

Observables are also associated with a vector space, but they are not state vectors. They are 
the things you measure and they are mathematically represented by linear operators acting on a 
vector space of states. The correspondence between operators and observables is subtle, and 
understanding it requires some effort. (197) 

In order to describe this correspondence, we need to discuss linear operators in little more 
detail. We have already come upon linear transformations (= operators) in Section 3.5. An 
operator   acts on a vector, say     , and gives another vector, say     :       =     . We require 
that   gives a unique output for every vector in the space. Recall that  :      is linear  if  

                                                        +      ) =        +       , 

for any complex numbers   and  . The set of all linear operators is itself a vector space, since a 
scalar times an operator is an operator, and the sum of two operators is also an operator. The 
operator    +    applied to an element      of   yields the result: 

                                                         (   +   )     =        +       . 

The product    of two operators   and   is the operator obtained by first applying   to some 
ket, and then   to the ket which results from applying  : 

                                                                     (    ) =    (    )). 

                                                             

197 The reader may ask why a physical quantity is represented by its associated operator. The initial information the 
observer has about a quantum system comes from a set of measurements.  This is the same as in classical physics.  The 
state of the system represents this information, which can be cast into different mathematical forms. It is usually 
described in terms of a state vector or a wave function. The wave function has no direct physical meaning.  It is just 
one way of storing information.  It stores all the information available to the observer about the system.  To make 
predictions about the outcome of all measurements  at any time  one has to ‘do’ something to the wave function to 
extract the information.  One has to perform some mathematical operation on it, such a squaring it, multiplying it by a 
constant, differentiating it, etc.  One has to operate on the wave function with some operator.  The operator is a 
specific instruction or set of instructions.  Every observable is associated with its own operator ([B8]). We use linear 
operators because we see quantum effects that exhibit linear superposition of states, and linear operators are the 
right mathematical objects for dealing with such superposition. 
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Normally the parentheses are omitted, and one simply writes       . However, it is very 
important to note that operator multiplication, unlike multiplication of scalars, is not 
commutative: in general,       . In the exceptional case in which    =    one says that these 
two operators commute with each other, or (simply) commute. 

If the Hilbert space under consideration is finite-dimensional, say   =   , then  a linear 
operator  :     can be represented by an nn matrix (198) 

                                                                 =  

      …    

      …    

… … … …
      …    

 . 

Thus in this case we can write       =      as 

(5.35)                                            

      …    

      …    

… … … …
      …    

  

  

  

…  
  

  =  

  

  

…  
  

 . 

The inner product of some element      of   with the ket       can be written as 

                                                                               =         

where the notation on the right side  the ‘sandwich’ with the operator between a bra and a ket  is 
standard Dirac notation. It is often referred to as a ‘matrix element’  even when no matrix is 
actually under consideration. One can write         as (            , and think of it as the linear 
functional or bra vector       acting on or evaluated at     .  Of course,           . 

In this sense, it is natural to think of a linear operator   on   as inducing a linear map of the 
dual space    onto itself, which carries      to      . This map can also, without risk of confusion, 
be denoted by  , and while one could write it as  (    ), in Dirac notation       is more natural. 
 ometimes one speaks of ‘the operator   acting to the left’. In this way  linear operators can also 
act on bra-vectors. If   is represented by a matrix, then       stands just for multiplying      by  . 

Given an operator  :    , its Hermitian (199) conjugate    is the unique operator such 
that 

                                                                             =          

for any      and      in   (200). 

Quantum mechanical observables are represented by a special kind of linear operators. They 
are represented by linear operators that are equal to their own Hermitian conjugates. Such 
operators are called Hermitian operators. If a linear operator is represented by a matrix   then 
it is Hermitian provided   =    :=       =      , i.e. if U is equal to its own conjugate transpose. 
In terms of matrix elements, this can be written as     =    

 .  

Why do we use in quantum mechanics only Hermitian operators for representing 
observables? We will discuss this question in a moment. First we need to introduce the notions 
of eigenvalues and eigenvectors (= eigenstates). 

In general, when a linear operator acts on a vector, it can change its direction and/or its 
magnitude. For a particular linear operator, there are however certain vectors whose directions 
do not change. These special vectors are called eigenvectors or eigenstates. Thus      is an 
eigenvector of   if  

                                                             

198 Equating a linear operator with a matrix, which depends on a particular basis, is sloppy but it should not cause 
confusion. 

199 After the French mathematician Charles Hermite (1822–1901). 

200 Note that   :       , where    is the dual space of   . 
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(5.36)                                    =     , 

where  is a number, known as the eigenvalue associated with     .  

Hermitian operators have the following important properties that build a foundation of 
quantum mechanics.  

 The eigenvectors of a Hermitian operator  :     form a basis of the space  ( ). This 
means that any vector, the operator can generate, can be expanded as a sum (i.e. linear 
combination) of its eigenvectors.  

 Eigenvalues of   are real. 
 If    and    are two different eigenvalues of  , then the corresponding eigenvectors are 

orthogonal.  
 Even if the two eigenvalues are equal, the corresponding eigenvectors can be chosen to be 

orthogonal. This situation, where two different eigenvectors have the same eigenvalue, is 
called degeneracy (we shall consider, for example, energy degeneracy in Section 6.1). 

In quantum mechanics the operator corresponding to an observable   is usually denoted by 
  . When we measure the observable  , the possible results of a measurement are the 
eigenvalues of the operator   . Since the result of an experiment must be a real number, the 
eigenvalues of the operator    must also be real. Moreover, the eigenvectors that represent 
unambiguously distinguishable results must have different eigenvalues, and must also be 
orthogonal. These conditions are sufficient to prove that    must be Hermitian. 

Let us repeat some important facts. First, when an observable is measured, the result is 
always a real number drawn from a set of possible results. For example, if the energy of an atom 
is measured, the result will be one of the established energy levels of the atom. In case of the 

spin (of a fermion), the possible values of any of the spin components are  
 

 
. The apparatus 

never gives any other result. Moreover, the result of a measurement is generally statistically 
uncertain. However, for any given observable, there are particular states for which the result is 
absolutely certain. These states correspond to the eigenvectors of the operator representing the 
observable. For example, if the S-G apparatus is oriented along the z-axis, the state      never 

gives anything but    =  
 

 
.  

Example 5.3. In this example, we shall look more closely at the form of the operators 
representing observables which are the spin components   ,    and   .  

Let the operator     represents the observable   ,   =  ,  ,  . We know that the operator    : 
       must Hermitian, i.e. it has a representation as Hermitian 22 complex matrix.  What is 
this matrix? 

Let us begin with the operator    . We know that it has definite, unambiguous values for the 

states      and     , and that the corresponding measurement values are  
 

 
 and  

 

 
. Hence 

applying (5.36) we get 

(5.37)                                                         = 
 

 
       and           =  

 

 
    .  

Moreover, states      and      are orthogonal to each other, i.e.       = 0. Using this condition and 
replacing in (5.37)     by a 22 matrix,      and      by the column vectors  

                                                                 
 
0
    and          

0
 
 , 

respectively, we infer that  

(5.38)                                                                     = 
 

 
 
 0
0   

 . 
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Thus      as defined in (5.38) is a quantum mechanical operator representing the observable   . 

This operator has two eigenvectors      and      with associated eigenvalues  
 

 
 and  

 

 
, 

respectively. We do the same for the other two components of spin,    and    to obtain 

(5.39)                                                     = 
 

 
 
0  
 0

 ,        = 
 

 
 
0  i
i 0

 . 

We see now that the quantum mechanical spin operators are represented by the Pauli matrices 
(5.23) 

      = 
 

 
 ,       = 

 

 
 ,       = 

 

 
 . 

In Example 5.2 spin components were measured by orienting our S-G apparatus along any 
one of the three coordinate axes x, y and z. But of course we can orient the apparatus along any 
axis and measure the spin component along it. In other words, take any unit 3-vector   and 
orient the S-G apparatus along  . Activating our apparatus would then measure the spin 
component    along the axis  . What is an operator     that corresponds to this observable? 
Assuming that   is a unit 3-vector with components   ,   ,    one can show that     is a linear 
combination of the Pauli matrices 

(5.40)                                              =  
 

 
   = 

 

 
(    +     +    ). 

Using (5.40) we can for a given vector   compute eigenvectors and eigenvalues of the operator 
   . Then we will know the possible outcomes of a measurement along the direction of  . And we 
will also be able to calculate probabilities for those outcomes. In other words, we will have a 
complete picture of spin measurements in three-dimensional space. 

It is important to point out that measuring an observable is not the same as operating with 
the corresponding operator on the state. In particular, it is in general wrong to say that if the 
state of the system before we do the measurement is     , then the measurement of   changes 
the state to       . To see this let us consider, as an example, the prepared spin state 

                                                                          = 
 

  
     + 

 

  
    . 

Acting on this state-vector with     gives  

                                                       = 
 

  
        + 

 

  
        = 

 

 
 

 

  
      

 

  
     . 

But this state-vector is definitely not the state that would result from a measurement of   . As 

we have seen in Example 5.2, that measurement result would be either  
 

 
, leaving the system in 

state     , or  
 

 
, leaving it in state     . Neither of these results is equal to the state represented 

by the superposition 
 

  
     

 

  
    . The point is here that measuring    destroys any 

information we may have had about   . 

Generally, we can say that if a state      is not an eigenstate of   , then this state of the 
physical quantity   is undefined, or meaningless in the sense that quantum theory can assign to 
it no meaning. In the Example 5.3      is not an eigenstate of     and thus has no meaning for the 
observable   .  

A crucial feature of quantum mechanics compared to classical mechanics is an inherent 
uncertainty. Uncertainty is not always the case that the result of an experiment is uncertain. If a 
system is in an eigenstate of an observable, then there is no uncertainty about the result of 
measuring that observable. But whatever the state, there is always uncertainty about some 
observable. Uncertainty refers to the spread in the observed values of a physical quantity in non 
eigenstates. There is no uncertainty in the theory, either in its mathematical formulation, or in 
its prediction of experimental results. 

In our spin example this uncertainty comes about since the spin component, say   , changes 
every time we measure    or   . Thus no two spin components can be simultaneously measured. 
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Mathematically, this means that the spin operators do not commute  it makes difference 
whether we first measure    or first measure   :                       . The shorthand notation for 
this expression is 

       [       ] :=                 0 , 

where [       ] is the commutator (201) of     and     and 0  the null operator. We know that the 
spin operators are represented by Pauli matrices. We shall see in Section 7.1 that Pauli matrices 
do not commute: [  ,   ] = 2i      , where      is the Levi-Civita symbol (202). 

More generally, if a state      happens to be an eigenvector of one Hermitian operator  call it 
    then it will not be an eigenvector of other operator    that do not commute with   . Thus, as a 
rule, if    and    do not commute, then there must be uncertainty in one or the other, if not both. 

Let us now see how the important quantum operators, the momentum operator   , the 
energy operator    and the position operator   , look like (203). We have already come upon these 
operators in Section 5.2 when discussing the Schrödinger equation. 

Let us start with momentum. We know that momentum is connected to symmetry under 
spatial transformations via the Noether’s theorem  204). On the other hand, the differential 
operator  generates spatial translations. Therefore, we make the identification    = i  (205) 
or simply    = i, since we assume that   = 1 (206). Of course,  

                                                      = (   ,    ,    ) = i(
 

  
, 

 

  
, 

 

  
). 

Analogously, energy is connected to symmetry under temporal translations which are generated 

by i 
 

  
, or shortly i 

 

  
. Consequently,    = i

 

  
.  

Take note that the (reduced) Planck constant   is introduced in order to ensure correct units of 
the operators    and   .   

Since there is no symmetry connected to the conservation of position, the position operator 
   is just   (207).  

Now let us compute the commutator [   ,    ], where           

                                        [   ,    ]      = (              )      

                                                               = (i
 

  
    i

 

  
)      

                                                               = (i
 

  
 )       i

 

  
     +  i

 

  
      

                                                               = i   
    , 

where     is the Kronecker delta (208). In conclusion (209) 

                                                             

201 Physically, the commutator [  ,  ] tells us whether measuring observable   affects the measurement of observable  
  and vice versa. 

202 The Levi-Civita symbol is defined as follows:         

    if                                         
0   if     or     or                                    

     if                                 .          

  

203 Notice that these operators act on the Hilbert space   ( ) of complex square-integrable  functions defined on 
spacetime.  
204 Recall that Noether’s theorem says that to every continuous symmetry of a theory corresponds a conservation law 
and vice versa. 
205 For a single particle with no electric charge and spin-0. 
206 The imaginary unit i is introduced in order to make eigenvalues of the operator real. The minus sign is motivated 
by the Minkowski metric. 
207 All this operator does if it acts on a function      is to multiply it by  , i.e.,             . 
208 The Kronecker delta     is, by definition, zero for      and one for     . 
209 This is the simplest case of one particle. In general, the index runs over all degrees of freedom in the system. 
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(5.41)                                               [   ,    ] = i    .  

This equation is known as the canonical commutation relation and plays a very important role in 
quantum mechanics. Actually, many textbooks use it as the fundamental postulate of quantum 
mechanics ([S2]). 

In quantum mechanics, average values are called expectation values. Suppose we have a 
probability function for the outcome of an experiment that measures an observable  . The 
outcome must be one of   ’s eigenvalues    , and the probability function is      . In bra-ket 

notation the average value of   is written    . From a mathematical point of view, an average is 
defined by the equation (210) 

                                                                       :=          . 

Suppose that the normalised state of a quantum system is      and expand it in the orthonormal 
basis of eigenvectors of   : 

                                                                         =     
     . 

Now let us compute the quantity         . Recall the meaning of this: First act on       with the 

linear operator   . Then, take the inner product of the result with the bra     . Let us do the first 
step  

                                                          =       
      =       

     , 

because       are eigenvectors of   :         =   
     . The last step is to take the inner product with 

    . We do that by expanding the bra      in eigenvectors on the right-hand side, and then using 
the orthonormality of the eigenvectors. The result is 

                                                  =     
        =           =    . 

We used here the probability principle to identify   
    with the probability      . Consequently, 

we have a quick rule to compute the averages of observables. Just sandwich the operator 
corresponding to the observable between the bra and ket representations of the state-vector: 

                                                                     =         . 

We now know what a quantum state is. A second crucial ingredient that we need in the 
quantum framework is something that allows us to determine how a given state evolves in time. 
That is what we are going to discuss now. 

Let us consider a closed system that at time   is in the quantum state     . To indicate that the 
state was      at the specific time  , we write        .  

The basic dynamical assumption of quantum mechanics is that if we know the state at one 
time, say at time zero, then the quantum equations of motion tell us what it will be later at time 
 . The state at time   is given by some operator that we denote     , acting on the state at time 
zero 

(5.42)                                                               =         0  . 

The operator   is called the time-development operator for the system.  

Quantum mechanics imposes a couple of restrictions on  . First, it requires that   is a linear 
operator. The relationships between states in quantum mechanics are always linear. It goes 
along with the idea that the state-space is a vector space. It also requires that the operator   
preserves distinct states. This implies that if two states are distinguishable (i.e. orthogonal) at 
time zero they will continue to be distinguishable for all time. We can express this as follows: if 
   0    0   = 0 then 

                                     =        0        0   = 0 for all values of  . 

                                                             

210 The expectation value is the average value of repeated measurements on the same state, which is the crucial point. 
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One can show that this condition is satisfied if     =  , where   is the unit operator (211), called 
also identity operator. An operator that possesses this property is called unitary. In physics 
lingo, the evolution of state vectors with time is unitary. 

Notice that the time evolution of the state vector is obviously deterministic. It is exactly like 
any other linear system state transition. But how does that fit together with the statistical 
character of our measurement results? As we have seen above in this section, knowing the 
quantum state      does not mean that one can predict the result of a measurement of     or    

with certainty. For this reason, equation (5.42) is not the same as classical determinism. 
Classical determinism allows us to predict the results of experiments. The quantum evolution of 
states allows us to compute the probabilities of the outcomes of later experiments. In classical 
mechanics, there is no real difference between states and measurements. In quantum mechanics, 
the difference is profound. 

If the state vector were the main focus of observational physics, we would say that quantum 
mechanics is deterministic. But experimental physics is not about measuring the state vector. It 
is about measuring observables. Nevertheless, between observations, the state of a system 
evolves in a deterministic way. But something different happens when an observation is made. 
Measuring an observable   can have an unpredictable outcome, but after the measurement is 
made, the system is left in an eigenstate of  . Which eigenstate? The one corresponding to the 
outcome of the measurement. But this outcome is unpredictable. So it follows that during an 
experiment the state of a system jumps unpredictably to an eigenstate of the observable that 
was measured. This phenomenon is called the collapse of the wave function. 

In quantum mechanics, we assume that unitary operators are continuous. This means that 
the state-vector changes smoothly. There is one property that makes continuous operators 
especially nice to deal with: they can be arbitrarily close to the identity operator  . This means 
that for small time intervals   , a unitary operator   can be written as 

       =   +     

for some operator  . In physics we write by convention 

(5.43)                                                                   =   + i   . 

Now, remembering that Hermitian conjugation requires the complex conjugation of coefficients, 
we find that  

                                                                       =    i    . 

Since   is unitary, i.e.     =  , we infer 

       (  + i   )(    i    ) =  . 

Expanding to first order in   , we find       = 0, or in more illuminating form 

                                                                                  =   . 

This last equation follows from the unitarity condition and says that   is a Hermitian operator. 
This has great significance. We can now say that the operator    :=   represents an observable 
and has a complete set of orthonormal eigenvectors and eigenvalues. We will see in a moment 
that    will become an already familiar object, namely the quantum Hamiltonian operator (see 
Section 5.2). Its eigenvalues are the values that would result from measuring the energy of a 
quantum system. 

Applying (5.43) we can write equation (5.42) in the form 

                                                                =    + i         0  . 

Hence   

                                                                
                

  
  i      0  . 

                                                             

211 The unit operator   is defined by       =      for every state     . Notice that      , i.e.   is Hermitian. 
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If we take the limit as     0, it becomes the time derivative of the state-vector (212):  

(5.44)                                                             
 

  
     = i      . 

This equation has the form of  chrödinger equation  5. ’ . However  in order to identify the 
operator    in (5.44) with the Hamiltonian, we have still to correct this equation, because it does 
not make dimensional sense. After all, in physics, the Hamiltonian is the mathematical object 
that represents the energy of a system. To resolve this dilemma let us rewrite the equation with 
Planck’s constant inserted in a way that makes it dimensionally consistent: 

(5.45)                                                          i 
 

  
     =       . 

This is exactly Schrödinger equation  5. ’ . If we know the Hamiltonian   , equation (5.45) tells 
us how the state of an undisturbed system evolves with time. 

Because the Hamiltonian operator    represents energy, the observable values of energy are 
just the eigenvalues of   . Let us call these eigenvalues    and the corresponding eigenvectors 
     . By definition, the relation between   ,   , and       is the eigenvalue equation 

(5.46)                                                                   =   
     . 

This is the time-independent Schrodinger equation. 

The quantum theory can be summarized as follows ([H13]): 

 The state of a system corresponds to a non-zero vector      (213) in an abstract ‘Hilbert space’ 
(214). The vectors      and        describe the same state, where   ≠ 0 is a complex number. 

 An observable, such as momentum, is associated with an linear operator that acts on state 
vectors. When the observable is measured in one of its eigenstates, the corresponding 
eigenvalue is obtained. However, when the observable is measured in a non-eigenstate, a 
statistical distribution of eigenvalues is the result. In order to ensure that the eigenvalues are 
real, it is necessary for the operators to be 'Hermitian'. 

 The process of quantization of a classical theory can be achieved through the conversion of 
the Hamiltonian  ( ,  ) into an operator   , facilitated by Heisenberg's commutation 
relation [ ,  ]     i . This procedure is designated as ‘canonical quantization’ 

 The Hamiltonian is the generator of time evolution, as expressed by the Schrödinger 
equation (5.45). 

The following table provides a concise overview of the principles of quantum formalism. 

                                                             

212 There is nothing special about t = 0, one gets the same result choosing arbitrary time. 

213 It should be noted that the notation |0  does not signify the zero vector, which is represented by 0. The ket |0  is 
used to denote the vacuum state, that is to say, the lowest energy state of a quantum system, in which no particles are 
present. 

214 The reader may ask why Hilbert space is used and not, for example, a Banach space. Here are some key reasons: 
(1) Hilbert spaces have an inner product, which allows for the definition of orthogonality and projection. This is 
crucial for quantum mechanics, where the inner product represents the probability amplitude and is used to calculate 
probabilities. Projections are associated with measurement operators, which correspond to observable quantities. 
When a measurement is conducted, the state of the system is said to be projected onto an eigenstate of the observable 
in question.  
(2) The spectral theorem applies to operators on Hilbert spaces, allowing for the decomposition of operators into 
eigenvalues and eigenvectors. This is a prerequisite for understanding the measurement process in quantum 
mechanics, where observables are represented by operators and their eigenvalues correspond to possible 
measurement outcomes.  
(3) The evolution of quantum states is described by unitary operators in Hilbert space, which preserve the inner 
product and hence the total probability. This ensures the consistency and conservation of probability in quantum 
mechanics. 
     In summary, Hilbert spaces offer the necessary mathematical structure and properties that are essential for the 
formulation and interpretation of quantum mechanics, making them the natural choice over more general normed 
spaces. 
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Physical quantities Mathematical terms 

quantum state vector in Hilbert space   

observable   Hermitian operator   :     

possible results of measurements of   eigenvalues of    

states associated with unique values of 
measurements of   

eigenstates of    

time development of a quantum state unitary operator   

 

In this section we have discussed ordinary quantum mechanics (QM), rather than quantum 
field theory (QFT). QFT and QM are different theories, but the difference is not so much in the 
equations. QFTs are just a special class of quantum mechanical theories where observables are 
conveniently written as quantum fields or as their functions and functionals. But they describe 
the same physics – and indeed, the non-relativistic quantum mechanical theories are the limits 
of QFTs in the case of speeds much lower than the speed of light. When one takes this limit, the 
Hilbert space of the non-relativistic QM theory is embedded or identified with the Hilbert space 
of the QFT ([M8]). 

QFT is a generalization of the quantum theory to fields. How does it work? It goes something 
like this (215): we take a (classical) field (e.g. electromagnetic field) and decompose it into a 
(potentially infinite) sum of basic sine wave patterns (harmonic oscillators) using a Fourier 
transform. Once this decomposition is done, we apply the rules of ordinary quantum mechanics 
to quantise these harmonic oscillators.  This leads to the notion of second quantisation, which is 
used to describe the canonical quantisation of relativistic fields. Each harmonic oscillator will 
have a lowest energy (ground) state and excitations, stepwise (quantised) higher energy states. 
It is these stepwise excitations that we recognize as particles. Because interactions create or 
annihilate excitations, QFT can account for the creation and annihilation of particles, something 
that ordinary quantum mechanics cannot do. And this very possibility of creation and 
annihilation of particle-antiparticle pairs (pair creation) is the physical reason for QFT ([T5]). 

Example 5.4. ([L1]) The key features of a harmonic oscillator, such as periodic motion and 
sinusoidal oscillations, can be well illustrated by a mass-spring system. In this system, a mass   
is attached to a spring with a spring constant  . When the mass is displaced from its equilibrium 
position, the spring exerts a restoring force proportional to the displacement  , thereby inducing 
simple harmonic motion. 

                                                                         

The total energy is   is the sum of the kinetic energy and the potential energy  

                                                             

215 The idea of field quantisation sounds simple but its implementation is difficult and requires a great deal of  ‘hard-
core’ mathematics. In QFT fields  typically as the wave functions of matter) are thought of as field operators, in a 
manner similar to how we considered above operators corresponding to observables (spin, position, momentum, 
etc.). The key ideas of this method were introduced in 1927 by Paul Dirac, and were developed, most notably, by Fock 
and Jordan later.  

Vladimir Aleksandrovich Fock (1898 – 1974) was a Soviet physicist. Ernst Pascual Jordan (1902 – 1980) was a 
German theoretical and mathematical physicist ([W11]). 
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   ,  

where       is the momentum. Replacing   by the operator i  we get the Schrödinger 
equation for a harmonic oscillator 

                                                                   
  

  
  

 

 
      E. 

The solutions to this equation are given by eigenfunctions 
 

 with eigenvalues  

 (5.47)                                                                    
 

 
   , 

where       . The energy levels    are arranged in a hierarchical structure, known as a 

ladder. It is noteworthy that when n = 0, the energy is not zero but rather equal to  ω  . This 
phenomenon is referred to as the zero-point energy.  

The Hamiltonian for the harmonic oscillator is expressed as follows: 

                                                                           
 

 
       

   

  
, 

where the spring constant is expressed as      . The operator    can now be written in the 
following form: 

                                                                       
 

 
         

   

  
    

and we could attempt to apply the formula                  in order to obtain  the 
following result: 

                                                                  
 

 
       

   

  
     

   

  
 . 

However, the formula                  is not applicable in this case, since the operators 
   and    do not commute. Consequently, the following formula must be employed:       
           [   ]. where [   ]       . Applying (5.41) we get 

                                                                      
   

  
  

 

  
[     ]   

 

  
. 

This implies that 

                                                             
 

 
        

   

  
     

   

  
  

 

  
  

and finally 

                                                               
  

 
 

 

 
       

   

  
     

   

  
 . 

It thus follows that    requires the correction   ω   due to the  ero-point energy being 
subtracted. 

We shall now consider the operators    and    , defined as follows: 

                                                
  

  
    

 

  
   ,         

  

  
    

 

  
   . 

The substitution of the  quantities    and     into the Hamiltonian yields the following equation: 

                                                                                      
 

 
 . 

We define the number operator     by          . The operator    has eigenstates      with 
eigenvalues   0     … :               ([L1]). It can thus be deduced that the eigenstates of    
will also be of the form     , with associated eigenvalues of          . This means that the 
eigenvalues (5.47) of a harmonic oscillator have been recovered. 

The quantity   is used to denote the energy level on the ladder that the system has reached. 
Alternatively, it may be considered the number of quanta (each of energy  ω  that must have 
been added to the system when it was in its ground state. 
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Now let us examine the state defined by         and apply the number operator to it. Since 

                      , we obtain  

                                                                                        . 

This demonstrates that the state         is an eigenstate of   , with an eigenvalue that is one 
higher than the state     . For this reason     is called the creation (or raising) operator, which 
increases the number of particles in the state by one. 

In a similar manner, it can be demonstrated that the state defined by        is an eigenstate of 
  , but with an eigenvalue that is one lower than the state     . For this reason    is called the 
annihilation (or lowering) operator, which decreases the number of particles in the state by one. 

In summary, the operator     can be regarded as the entity responsible for the creation of a 
quantum of energy  ω  and the subsequent movement of the oscillator up one rung of the 
energy ladder. Conversely, its adjoint,     acts to annihilate a quantum of energy  ω and move the 
oscillator down one rung of the ladder. It is important to note that these quanta of energy 
behave like particles: the application of these operators results in the addition and subtraction of 
particles. 

We end this section with the following comment. Comparing equations  5. ’  and  5.45) we 
treated a wave function as though it were the state vector. This ambiguous use of terminology 
can be confusing. It becomes less confusing when we realize that a wave function can represent 
a state vector.  To see it let us expand a state vector      in a specific basis of eigenvectors   

 
  

corresponding to a given quantum operator 

(5.48)                                                               =     
  

 
 . 

Since the state-vector      changes with time and the basis vectors   
 
  do not, it follows that the 

coefficients    must also depend on time:    =      . We can also consider    as a function of both 

t and  :    =        .  In general, different operators have different eigenstates. This means that 

we can expand a general state vector in terms of different eigenstates corresponding to a 
different operator. Notice that operators which commute have a common set of eigenstates. 

For example, if we are interested in the energy of the system, we expand our general state 
vector in terms of energy eigenvectors      . By (5.33) each coefficient in the expansion is equal 

to the inner product of       with one of the basis vectors:     =       . Moreover, as we have 

seen in Example 5.2, the coefficients    tell us the probability to measure a given result.  The set 

of possible outcomes need not be discrete. In the case of a continuous set of possible outcomes, 
the general state in (5.48) is expressed as an integral rather than a sum. Also, the set of discrete 
coefficients    =         is then replaced by a function  = (t,  ). This function is called the 

wave function.  

The form of the wave function depends on which observables we choose to focus on. That is 
because calculations for two different observables rely on different sets of basis vectors. 
According to the basic probability principle of quantum mechanics, the squared magnitude of 
the wave function is the probability for the observables to have specific values (= eigenvalues). 
An example of a wave function is the function (x) that we get by expanding a state vector in 
terms of position eigenstates  

                                                                      =             . 

Let us return now to our main topic. 
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6. Classical Yang-Mils theory (216) 

The history of the Yang-Mills theory is long and complicated (see e.g. [O1], [O2], [Q2]). In 1935, 
Yukawa (217) suggested that the strong nuclear forces might be mediated by massive mesons. 
Yukawa proposed in his paper [Y4] a theory of the strong interaction between a proton and a 
neutron  and also considered its possible extension to neutron  -decay. He built his theory by 
analogy with electromagnetism, postulating a new field of force with an associated new field 
quantum, analogous to the photon. In doing so, he showed how particles interact by exchanging 
virtual quanta, which mediate the force.  ([A1]) 

 lthough Yukawa’s ideas did not work as a theory of strong interactions (218), his approach was 
profound, and the ideas have broad and lasting validity. 

In 1954, Chen Ning ‘Frank’ Yang (219) and Robert Mills (220) proposed a mathematical 
scheme that might be useful for the strong interaction, which (among other things) binds 
protons and neutrons together in the nucleus (221). Yang and Mills wondered if they could find 
some symmetry among particles that would dictate their interactions, and found a promising-
looking candidate called ‘isotopic spin’, first described by Werner Heisenberg (222) in 1932. Just 
as the phase of the wave function in electromagnetism can be shifted arbitrarily in spacetime 
because the interaction with the electromagnetic field    cancels out the effect of the alteration 

(see Section 5.4), so Yang and Mills proposed to do the same for isotopic spin, hypothesising the 
existence of a ‘   field’ to counteract the change ([C7]). 

The SU(2) gauge theory they found did not work for this purpose, since (as we shall see in 
Section 7.5) what was needed was an SU(3) theory of quarks and gluons which came only 20 
years later (223). The SU(2) gauge theory of isotopic spin they were considering ultimately did 
find a role in the electroweak part of the Standard model, but this idea got started only after the 
symmetry properties of the weak interactions became clear later in the 1950s. Schwinger and 
his student Glashow were among the first to work on this idea, with the correct theory not 
appearing until 1967 after the role of the Higgs mechanism was understood ([W13]). 

In 1953, Pauli could have been the author of the seminal discovery of gauge theories which 
constitute the basis of our current understanding of nature at short distances. He was interested 
in a six-dimensional theory of general relativity along the lines suggested by Th. Kaluza (224) and 
O. Klein in five dimensions. He compactified two extra dimensions into two-dimensional sphere, 
which led him to SU(2) gauge theory. However, non-Abelian gauge bosons remain massless, and 
at that time the only massless fields known to physicists were photons and the neutrino  

                                                             

216  See [A1] and [Y1] as a general reference for this chapter. 

217 Hideki Yukawa (1907 – 1981) was a Japanese theoretical physicist and the first Japanese Nobel laureate (1949) for 
his prediction of the pi meson. 

218 Yukawa assumed that the nucleons and his quantum (later identified with the pion) were point-like, but in fact 
both nucleons and pions are quark composites.  

219 Yang Chen-Ning or Chen-Ning Yang (1922 –), also known as C. N. Yang or by the English name Frank Yang, is a 
Chinese theoretical physicist. Yang is the only citizen of the People's Republic of China who has won the Nobel Prize in 
Physics (1957). 

220 Robert Laurence Mills (1927 – 1999) was an American physicist. 

221 See also R. Shaw [S7]. Ronald Shaw, a post-graduate student of Abdus Salam at Cambridge, working under the 
influence of Schwinger invented gauge field theory in his doctoral thesis, independently of (and almost simultaneously 
with) Yang & Mills. The maths was very elegant, but it appeared to have no application in nature (because of the mass 
problem). Therefore Shaw and his supervisor decided not to submit the work for publication. When Salam heard of 
the Y-M paper, he advised Shaw to publish his results (which he did not). 

222 Werner Heisenberg (1901 – 1976) was a German theoretical physicist and one of the key pioneers of quantum 
mechanics. 1932 Nobel Prize in Physics. 

223 SU(n) denotes the special unitary group of degree n. It is the group of n×n unitary matrices with determinant 1 
(see Section 7.1 for details). 

224 Theodor Franz Eduard Kaluza (1885 – 1954) was a German mathematician and physicist. 



88 

 

postulated by Pauli in 1930 (225) ([S8]), and not yet discovered in 1953 (226). Moreover, such a 
particle would mediate a long range force instead of the short-range force of the strong and 
weak interactions.  

In late 1953, Pauli's enthusiasm began to wane. "If one tries to formulate field equations one 
will always obtain vector mesons with rest mass zero. One could try to get other meson fields - 
pseudoscalars with positive rest mass. But I feel that is too artificial" ([P1]). Because of his 
super-high requirements for his own work in physics, Pauli put on hold publication on his theory 
(227). Pauli applied extremely high criteria of ‘cleanliness’ both to his own works and to those of 
other theoretical physicists and was not afraid of open conflicts in those cases when he saw gaps 
or imperfections in the line of reasoning. (228) 

We begin with a discussion of the idea of isospin. 

6.1. Isospin and SU(2) symmetry 

Because like charges repel, it is remarkable that the atomic nucleus stays together. After all, the 
protons are all positively charged and are repelled from each other electrically. To hold these 
particles so closely together, physicists hypothesised a new force, the strong force, strong 
enough to overcome the electric repulsion of the protons. It must be strongest only at short 
distances (about  0    m – see Chapter 2), and then it must fall off rapidly, for protons are 
repelled electrically unless their separation is that small. Neutrons must also experience it 
because they are bound to the nucleus as well ([H16]). 

Physicists spent several decades trying to understand the strong force; it was one of the 
principal problems in physics in the mid-twentieth century. When the neutron was discovered in 
1932, it was natural to assume that this was a composite particle consisting of a proton and an 
electron. Heisenberg used the neutron-as-proton-plus-electron idea to develop an early theory 
of proton–neutron interactions in the nucleus. He hypothesized that the proton and neutron 
bind together in the nucleus by exchanging an electron between them, the proton turning into a 
neutron and the neutron turning into a proton in the process. ([B1]) 

Heisenberg proposed in [H3] that the proton and neutron could be two states of a single 
nucleon ([H16]). These states are differentiated by an internal property that can have two 
values,   

   and   
  , in analogy with the (true) spin of a particle such as the electron. This new 

                                                             

225 The neutrino was postulated by Pauli to explain how beta decay could conserve energy, momentum, and angular 
momentum (spin). Pauli, who was unwilling to give up the conservation laws, conjectured the existence of a new 
particle. This was a neutral particle of spin ½ with a mass "not larger than 0.01 proton mass”, as Pauli suggested in a 
famous letter sent on December 4, 1930, to nuclear physicists who were holding a meeting in Tübingen, Germany (see 
Section 7.4). He proposed that each electron in the nucleus was accompanied by one of the new particles, which he 
provisionally named neutrons. Pauli let the matter rest, presenting his idea publicly at the Solvay Conference in 
October  9   held in Brussels. The word ‘neutrino’ entered the scientific vocabulary through Enrico Fermi, who used 
it during a conference in Paris in July 1932 and at the Solvay Conference in 1933, where Pauli also employed it. The 
name  the Italian equivalent of ‘little neutral one’  was jokingly coined by Edoardo  maldi during a conversation with 
Fermi at the Institute of Physics of via Panisperna in Rome, in order to distinguish this light neutral particle from 
heavy neutron ([W11]). 

226 The discovery of neutrino took two decades to accomplish, since the neutrino can pass through light-years of 
matter without interacting. It was first observed in 1956 by a group led by Clyde L. Cowan and Frederick Reines of Los 
Alamos National Laboratory. In 1995, Frederick Reines was awarded the Nobel Prize in Physics for the discovery of 
the neutrino. (Clyde Cowan died in 1974.) 

227 In December  95  Pauli wrote in a letter to Pais [P ]: “So this leads to some rather unphysical `shadow particles'." 
It was clear to him that the gauge bosons had to be massless. This must have been the reason why he did not publish 
anything. ([S13]) 

228 Pauli had already long been recognized as one of the major figures in twentieth-century physics, not only because 
of his own contributions, but also because of his critical judgments – which could be quite sharp, but nearly always to 
the point – of others’ work. He was known as the conscience of twentieth-century physics. Pauli’s critical mind could 
not bear unsound results, incomplete works, or hand-waving arguments. It was important that he applied the same 
high criteria to his own results. Very instructive in this respect is the story of his last work with Heisenberg which 
remained unpublished ([P1]). 
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property is called isotopic spin, or isospin for short (229), and the nuclear binding force is said to 
exhibit isospin symmetry. The nucleon has then two allowed states (the proton p and the 
neutron n) which are not distinguished by the nuclear force. Converting a neutron into a proton 
is then equivalent to ‘rotating’ the spin of the neutron in an ‘isospin-space’ (which has just two 
dimensions, up and down) from spin-down to spin-up. ([B1]) 

The families of similar particles are known as isospin multiplets: two-particle families are 
called doublets, three-particle families are called triplets, and so on. The doublet (n, p) is 
grouped together in an isospin multiplet with total isospin   =    , with projection    =   

   for 

the proton and    =   
   for the neutron (230). 

The rest energies of the proton and neutron are almost the same:    = 938.28 MeV/c2,    = 

939.57 MeV/c2 (231). Following the mass-energy equivalence of special relativity   =  c2, this 
mass equivalence can be viewed as an energy degeneracy (232) of the underlying interactions. 
Quite generally in quantum mechanics, we know that whenever we have a set of states which are 
degenerate in energy (or mass) there is no unique way of specifying the states: any linear 
combination of some initially chosen set of states will do just as well, provided the normalisation 
conditions on the states are still satisfied. ([A1]) 

This single near coincidence of the masses    and    was enough to suggest to Heisenberg 

that, as far as the strong nuclear forces were concerned (electromagnetism being negligible by 
comparison), the two states could be regarded as truly degenerate, so that any arbitrary linear 
combination of neutron 

 
 and proton 

 
 wave functions would be entirely equivalent, as far as 

this force was concerned  for a single ‘neutron’ or single ‘proton’ wave function. This hypothesis 
became known as the charge independence of nuclear forces (233). Thus redefinitions of neutron 
and proton wave functions could be allowed, of the form 

(6.1)                   
 

  
 
  = u

 
 + v

 
,         

 
  

 
  = w

 
 + z

 
, 

where u, v, w and z are complex numbers. ([A1]) 

If the proton and the neutron are to be viewed as two linearly independent states of the 
same particle, it is natural to represent them in terms of a two component vector, analogous to 

the spin-up  
 
0
  and spin-down  

0
 
  states of a spin-½ system.  The analogy can be brought out by 

introducing the two-component nucleon isospinor (see [A1; Chapter 12] for more details) 

(6.2)                                                   :=  


 


 
  = 

  
 
0
  + 

  
0
 
 . 

In the proton-neutron doublet      , 
 

 is the amplitude for the nucleon to have ‘isospin up’ 

and 
 

 is that for it to have ‘isospin down’. Linear combinations of 
 

 and 
 

 correspond to 

quantum-mechanical superpositions of the two states, and the particle then looks sometimes 
like proton and sometimes like neutron. 

                                                             

229 The isotopic spin was first introduced by E. Wigner [W9] and B. Cassen and E. U. Condon [C2]. One should however 
distinguish this isospin from the weak isospin, which (as we shall see in Section 7.4) is an attribute of leptons as well 
as of quarks in the context of weak interactions and, hence, physically quite distinct from the isospin considered here. 

230 This projection is analogous to the spin operator     in Example 5.3. 

231 We now believe that that this small difference is due the near equality of the up and down quarks. 

232 Degenerate is used in quantum mechanics to mean 'of equal energy’. The number of different states of equal energy 
is called the degree of degeneracy  or just degeneracy. 

233 More accurately, Heisenberg supposed that strong interaction physics remains invariant if one exchanges the 
proton and the neutron. Note that this symmetry is considerably weaker than isospin symmetry, in which one 
transforms the proton and the neutron into linear combinations of each other. In 1936, B. Cassen and E. U. Condon, 
and, independently, G. Breit and E. Feenberg, proposed that Heisenberg's exchange symmetry be generalized to 
isospin symmetry. ([Z2]) 
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Despite this formal analogy between the isospin and spin-up and spin-down states of a spin-
½ system, it is important to be clear, however, that the two cases are quite distinct. In particular, 
even though both the proton and the neutron have (true) spin-½, the transformations (6.1) 
leave the (true) spin part of their wave functions completely untouched (234). Thus, the isospin 
has nothing to do with the true spin of the particles, i.e. it is not a spin in physical space with a 
corresponding angular momentum. This is a ‘spin’ in an abstract space with no associated 
angular momentum. ([A1]) 

Heisenberg’s proposal  then  was that the physics of strong interactions between nucleons 
remained the same under the transformation (6.3): in other words, a symmetry was involved. It, 
therefore, seems that all protons and neutrons could be interchanged and the strong interaction 
would hardly be altered. If the electromagnetic forces could somehow be turned off, the isospin 
symmetry would be exact; in reality it is only approximate. ([A1]) 

The weaknesses of the Heisenberg’s theory were exposed in experiments performed just a 
few years later. Because protons do not possess a ‘stuck-on’ electron  the electron-exchange 
model did not allow for any kind of interaction between protons. In contrast, experiments 
showed that the strength of the interaction between protons is comparable to that between 
protons and neutrons. Despite the shortcomings of the theory  Heisenberg’s electron-exchange 
model held at least a grain of truth. The exchange of electrons was abandoned, but the concept of 
isospin was retained. ([B1]) 

If isospin invariance would be an exact symmetry then it is a matter of convention which 

component of       would correspond to the proton and which one to the neutron. lf one insists 
on being able to define this convention at any spacetime point separately, then one is led to the 
construction of a gauge field theory based on local isospin transformations  this is the heuristic 
argument that motivated Yang and Mills to attempt the construction of the gauge theory of 
SU(2) ([W12]). They asked the question whether the reference frame used to define the isospins 
could vary from point to point. If so, the information that a particle produced at a given 
spacetime point was e.g. a proton would be meaningless for a different observer, unless there 
existed a way to compare their two frames. This is a role of the gauge field, very much as in 
electrodynamics relative phases of charged fields at different points make sense only when 
compared via the electromagnetic potential   . ([I2]) 

Equations (6.1) can be written in terms of       as 

(6.3)                                                                  = U     ,  

where U is the complex 22 matrix 

(6.4)                                                                U :=  
u v
w  

 . 

The matrix (6.4) depends on four arbitrary complex numbers or, alternatively, on eight real 
parameters. However, it is subject to certain restrictions (235) and these reduce the number of 
free parameters in U to three ([A1]). Consequently, instead of arbitrary matrices one considers 
in (6.3) only so-called special unitary 22 matrices.  

‘ pecial’ simply means that   has unit determinant det(U) = 1. A matrix U is called unitary 
provided   U = U   = I, where I is the identity matrix and    := (    . For example, for the 
matrix (6.4) we have 

                                                                           =  
u w 

v    . 

Every special unitary 22 matrix U has the form 

                                                                         U =  
u v 

 v u   

                                                             

234 These transformations just mix the two components of the isospinor (i.e. the proton and neutron) inside the 

doublet      . 
235 For example, the transformation (6.3) must preserve the normalisation of      . This implies that U has to be 
unitary. 
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where u, v are complex numbers with the property  u   +  v   = 1.  

Notice that for complex vectors we want the inner product of a vector with itself to be a real 
number because by definition this should result in the squared length of the vector. A complex 
number would make little sense as the length of the vector. Therefore, the inner product uu, 
where u = (  ,   , ...   )    , is defined with additional complex conjugation uu := u u = uu  = 
   

  
     

  =      
  

       (cf. Section 5.9).  

In order for the physical predictions to be unchanged by a transformation U, it must 
preserve the length of state vectors and this is the case if and only if U is unitary, i.e. U†U = I. 

The set of all special unitary 22 matrices with ordinary matrix multiplication form a group 
called SU(2) (236). Of course, it is a non-Abelian group because the matrix multiplication is in 
general not commutative (cf. Example 3.3). Thus the isospin symmetry is governed by a non-

 belian group       ‘rotating’ components of the doublet       into each other in abstract 
isospin space    (237). This enables one to utilize what is already known about the SU(2) 
symmetry group from the study of angular momentum.  

Now let us show that the transformation (6.3) is of essentially the same mathematical form 
as the (global) phase transformation   ‘   e  . 

A complex matrix H is called Hermitian if H = H , i.e. if it is equal to its own conjugate 
transpose. The trace of a square matrix H, denoted Tr(H), is defined to be the sum of elements 
on the main diagonal (from the upper left to the lower right) of H. H is called traceless if Tr(H) = 
0. Thus if H is a 2×2 traceless Hermitian matrix then it must have the form (238) 

(6.5)                                                          H =  
a b  ic 

b  ic  a
  

where a, b, c are real numbers. Putting a = α /2, b = α /2 and c = α /2 we can write (6.5) as 
follows 

(6.6)                                                                    H = 
 

 
  · 

where   stands for the three real numbers  = (α , α , α ) and  for three matrices  = (1, 2, 
3) which are just the familiar Pauli spin matrices (5.23) 

(6.7)                        =  
0  
 0

       =  
0  i
i 0

            =  
 0
0   

  

here called ‘tau’ in order to distinguish them from the mathematically identical ‘sigma’ matrices 
which are associated with the real spin degree of freedom. ([A1]) 

Let us show that (6.6) holds. We have  

            
 

 
  · = 

 

 
 (α   + α   + α  ) = 

 

 
 ( 

0 α 

α 0
  +  

0  iα 

iα 0
  +  

α 0
0  α 

 ) = 

                      = 
 

 
  

α α   iα 

α  iα  α 
  =  

a b  ic  

b  ic  a
  = H. 

It is known that every special unitary matrix U has the form     (239) for some traceless 
Hermitian matrix H (see Section 7.1). Consequently, if U belongs to SU(2) then it has the form  

                                                             

236 The   stands for ‘special’    stands for ‘unitary’ and   for  ×  matrices. 

237 Prior to isospin, the symmetries of physics (translation invariance, rotation invariance, Lorentz invariance, and so 
on) were confined to the spacetime. Heisenberg’s proposal led to the discovery of a vast internal space  the ongoing 
exploration of which has been a central theme of fundamental physics for close to a hundred years now ([Z1]). 

238 In general, nn Hermitian matrices contains      1 adjustable (real) constants.   

239 In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary 

exponential function   . If V is a square matrix then the exponential of V, denoted by    or exp(V), is the matrix given 

by the power series    :=  
 

  
   

    where    := I is defined to be the identity matrix with the same dimensions as V. 

The power series always converges, e.g. with respect to the norm ||V|| =        
   

     , where V = [   
 ]. 
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(6.8)                                                                   U =   
 

 
     

and we can write the transformation (6.3) as 

(6.9)                                                               =   
 

 
         . 

Now it is clear that the isospin transformation (6.9) is a generalization of the global phase 
transformation   ‘   e  , except that 

 there are now three ‘phase angles’ α , one for each Pauli matrix  , and 

 there are non-commuting matrix operators  the τ’s  appearing in the exponent. ([A1]) 

The   matrices play an important role since they determine the forms of the three (linearly) 
independent SU(2) transformations. They are called the generators of SU(2) transformations 
(more precisely, they are generators of the algebra su(2)  see Section 7.1 for details). 

Since the elements of SU(2) are parameterized by two complex numbers (6.5), with the sum 
of their squared length equal to one, they are vectors of length one in   , when we  identify    = 
  . Just as U(1) could be identified as a space with the unit circle in   =    (see Section 5.5), 
SU(2) can be identified with the unit three-sphere    in   . 

Finally, let us notice that the internal SU(2) symmetry (6.3) 

                                   (t,  )        (t,  ) = U     (t,  ) 

is a global one because the matrix U does not depend on (t,  ). 

The stage is now set for the discussion of the Yang-Mills paper [Y1]. 

6.2. The Yang-Mills paper 

On October 1st 1954 the 32 years old Chen Ning Yang and somewhat younger Robert Mills 
published the paper [Y1] “Conservation of Isotopic Spin and Isotopic Gauge Invariance”  in which 
they asked the following question: Could one replace global isospin rotations (6.3) by local 
(spacetime dependent) ones? This would mean that the matrix U would depend on the points of 
spacetime, just like the gauge generator (t,  ) (240) in electromagnetism: 

                                                 (t,  )  U(t,  ) =  
u t   v t   
w t     t   

 . 

Yang and Mills [Y1]: “We define ‘isotopic gauge’ as an arbitrary way of choosing the 
orientation of the isotopic spin axes at all spacetime points, in analogy with the electromagnetic 
gauge which represents an arbitrary way of choosing the complex phase factor of a charged field 
at all space-time points. We then propose that all physical processes (not involving the 
electromagnetic field) be invariant under an isotopic gauge transformation,   = U, where U 
represents a space-time dependent isotopic spin rotation.” 

The local SU(2) transformation for an isospin doublet wave function 

(6.10)                              (t,  )  U(t,  )     (t,  ) =   
 

 
              (t,  ) 

leads however to a problem similar to that in electromagnetism. To write down field equations 
for protons and neutrons, one needs the derivatives of these fields. The way these derivatives 
transform under a gauge transformation (6.10) implies that there will be terms containing the 
gradients  U of the matrices. To make the theory gauge-invariant, these gradients would have 

to be cancelled out, and in order to do that, Yang and Mills replaced the derivative   by a 

covariant derivative    as was done in electromagnetism (see Section 5.4). ([H10]) 

                                                             

240 See (5.11). 
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In the electromagnetic case, the covariant derivative is    =   + i    which under a local 

U(1) phase transformation (5.14) transforms as a matter field  with charge   (see Section 5.2) 

(6.11)                                                          V(t,  )  (t,  ), 

where V(t,  ) = e        is a local U(1) transformation corresponding to the generator    see 
Example 7.7 below (241). The gauge transformation (4.19) of    can be then written as 

 (6.12)                                                       V   
    

 

 
( V)  . 

Indeed, we have V   
  =  e       e           =    and  

 

 
( V)    = 

 
 

 
  e

        e         =  
 

 
e        e        i  t    =   t   .  

Hence (6.12) amounts to (4.19):           .        

Property (6.11) ensures the gauge covariance of wave equations in the U(1) case. By 
analogy, the key property one demands for a SU(2) covariant derivative    is that the quantity 

  
      should transform like       in (6.10). It means that  

(6.13)                                 
       U(t,  )  

      =   
 

 
          

      

must hold. Yang and Mills defined    as follows 

(6.14)                                                       := I2    ig
 

 
 ·   (t,  ),  

where I2 is the 22 identity matrix and  stands for three Pauli matrices  = (1, 2, 3). The   (t, 

 ) denotes three independent vector fields    = (  
 ,   

 ,   
 ) (242) generalizing the single 

electromagnetic gauge field    (243). The parameter g is coupling strength, analogous to the 

electromagnetic charge   (244). 

As we have already mentioned in Section 4.4, when a global invariance is generalized to a 
local one  the existence of a new ‘compensating’ fields is entailed  interacting in a specified way. 

The term  ·    in (6.14) is then the 2×2 matrix 

                       ·    = 1  
  + 2  

  + 3  
  =  

  
   

   i  
 

  
  i  

    
  , 

the (t,  )-dependence of the   
 ’s is understood ([A1]). Notice that the derivative    is also a 22 

matrix 

                                             =  
 0

0  
   ig

 

 
 

  
   

      
 

  
     

    
  , 

so it can act on a two-component isospinor       (245). Putting    := 
 

 
 ·    we can write (6.14) 

in the form   

                                                             

241 The parameter q labels the representation to which the matter field  belongs - see Section 7.1. 

242 Please note that despite the µ subscript,   
  is not a 4-vector. In this shorthand the index   of    

  is hidden. One must 

presume its presence from the context. Each vector   
 ,          has four real components (  

 ,   
 ,   

 ,   
 ). 

243 Now there are three fields because the su(2) algebra has three generators   see Section 7.1 and Example 7.8. 

244 The coupling constant  ‘gauge coupling parameter’  g determines the strength of the interaction with the fields   . 

This is analogous to the fine-structure constant  =   /4  1/137, which quantifies the strength of the 
electromagnetic interaction between fundamental charged particles. Strictly speaking, neither g nor  is a constant. 

245 The notation   
      should be understood as                

 
, where       =   

  ig
 

 
          

 
   , k 

= 1, 2,   =   and     . 
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                                                                           = I2   ig    

which is analogous to the covariant derivative    =   + i    in the electromagnetic case. This 

time, however, (t,  )    (t,  ) is not a 4-vector field but consists of four matrix-valued fields. 

In order to ensure that equation (6.13) is satisfied, Yang and Mills defined the 
transformation law for SU(2) gauge fields    as follows 

(6.15)                                             
 

 
 ·   

  = U
 

 
 ·    

   
 

 
( U)  , 

where U = U(t,  )  SU(2). Writing (6.15) in the form (246) 

                                                                 
  = U   

   
 

 
( U)    

we can see that this (more complicated) transformation is similar to the gauge transformation 
(6.12) of the electromagnetic gauge field   , the U(1) transformation V being replaced by the 

SU(2) transformation U (247) ([A1]).    

In analogy to the procedure of obtaining electromagnetic field-strength tensor (4.7), the 
SU(2) field strength tensor, is given by 

(6.16)                                                  :=            g    . 

One might try to define the field strength tensor of as         , but this quantity does not 

have the required transformation property under U (248). On the other hand, the field strength 
tensor (6.16) transforms as needed 

                                                                          U    
 .  

The quantity     has three components    
 ,    

 ,    
  where  

                                                           
  =    

       
    g      

 . (249)  

Notice that each    
 ,   = 1, 2, 3, is a 44 matrix [   

 ], ,   = t, x, y, z. 

One can show that analogous to (5.12)  

(6.17)                                            [  ,   ] :=           = 
 

 
ig ·   .  

Since the tensor     arises from the commutator of two gauge-covariant derivatives, it is 

itself SU(2) gauge covariant, i.e. it transforms under local SU(2) transformations in the expected 
way (250). However,     contains a non-linear term g    , which makes the Yang-Mills 

equations a lot more complicated than Maxwell’s equations. In particular, the presence of the 

                                                             

246 In order to ensure that a global transformation U conserves the physical properties of the system, the field    

should transform as     U   
 . Local transformations require additionally the term i g ( U)    see Section 7.2. 

247 We take g > 0, while the electron charge is negative. This is the origin of some apparent sign differences in the 
definitions for the U(1) and the non-Abelian case SU(2) ([M1]). 

248 Yang had searched for this tensor without success since his student days in 1947. As he recalls ([H13]): 
“I was clearly focusing on a very important problem. Unfortunately the mathematical calculations always ended in 
more and more complicated formulas and total frustration. It was only in 1953–1954, when Bob Mills and I revisited 
the problem and tried adding quadratic terms to the field strength     that an elegant theory emerged. For Mills and 
me it was many years later that we realized the quadratic terms were in fact natural from the mathematical point of 
view.”  [Y ]  

249 For example,    
  =  

 

  
  

    
 

  
  

  – g(  
   

     
   

 ), because        
  being the first component of  the product  

   
    

    
     

    
    

    is equal to   
   

     
   

 . Usually the following notation is used:         
 =       

 
  

  := 

       
 
  

  
      where      denotes the Levi-Civita symbol. Recall that   

  is a vector with components (  
 ,   

 ,   
 ,   

 ). 

250 By SU(2) gauge covariant we mean that it transforms according to the adjoint representation Ad of the group 
SU(2)  see Section 7.2 for details. 
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gauge coupling constant g in this term means that the fields   
 ,   

 ,   
  themselves carry SU(2) 

‘charge’ and act as sources for the field strength. Consequently, these gauge fields will 
necessarily interact with themselves and therefore a gauge theory of non-Abelian fields alone 
has non-trivial interactions and is not a free theory.  

This is profoundly different from the electromagnetic case, where the gauge field    for the 

photon is of course uncharged (photon has no electric charge) and the third term in (6.16) is 
absent for    in (4.7). ([A1]) 

In order to derive the field equations for the   fields, Yang and Mills introduced the 

following Lagrangian density 

 (6.18)                                  
  =   

 

 
    

      
 

(   ig ·  )      . 

where  =       and both the ‘isospinor’ components of       are four-component Dirac 
spinors (251). Writing (6.18) in the form 

(6.19)                                   
  =   (

 
    )   

 

 
    

     g 
 
 ·   ,  

we can see similarities with the Dirac-Lagrangian density (5.30). We have here the ‘free’ term 

  (
 
    )  the ‘kinetic term’    

        =  
 

 
    

   and the ‘interaction term’ g ·  . 

This interaction term couples the gauge fields    with the isospin (fermionic) field .  

In the derived field equations (Euler-Lagrange equations) appears the quantity    = ig   

which the authors use to define the isotopic spin current density 

                                       
   =    + 2g     .   

This density satisfies the equation of continuity  

                                                                                
   = 0.  

It implies that   
   is conserved. This corresponds to the law of conservation of electric charge in 

electrodynamics. Note that   
   contains the gauge fields itself. That is, each gauge field carries 

charge, and acts as its own source. In contrast, the electromagnetic field is neutral, and does not 
have intrinsic self-interaction ([H13]) 

In the further part of the paper the fields    are quantised, which results in complex 

equations. In the last section, the authors formulate the following statement regarding the 
quanta (= bosons) of the fields   : 

„The quanta of the   field clearly have spin unity and isotopic spin unity. We know their electric 
charge too because all the interactions that we propose must satisfy the law of the conservation 
of electric charge, which is exact. The two states of the nucleon, namely proton and neutron, 
differ by charge unity. Since they can transform into each other through the emission of a   
quantum, the latter must have three charge states with charges of  ±e and  0“. 

Thus the Yang-Mills theory predicts and describes a new type of three spin-1 particles (i.e. 
three bosons associated with the Yang-Mills    fields) that transmit a force not unlike the 

electromagnetic force. Just as electromagnetic gauge invariance requires the existence of 
massless photons, so Yang-Mills symmetry invokes three massless vector gauge bosons, two 
with opposite electric charges, one neutral. 

                                                             

251 Reminder:   are the Dirac matrices (5.24) and    := †  . Moreover, the scalar term     
   is actually equal to 

the sum     
      . 

    Notice that 44 matrices   act on the four components of the Dirac spinors 
 

 and 
 

, whereas 

the SU(2) transformation (being a 22 matrix) mixes the two Dirac spinors inside the doublet  =  
 

 
 . 

Recall that    :=      = (    
 ,     

 ,     
 ), where    is the Minkowski metric   
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The main problem of the Yang-Mills theory is that it is not possible to add a mass term for 
the gauge fields of the form ½        to the Lagrangian density    

 , since such a term would 

not be invariant under the gauge transformations (6.15) of the    fields. Hence, just as in the 

U(1) (electromagnetic) case, the    quanta of this theory have to be massless. But Yang and 

Mills actually wanted to develop a theory for describing strong interactions of mesons (pions, 
kaons, vector mesons). However, these forces only act over very short distances, i.e. their 
exchange particles must be massive (vector) bosons. The authors were well aware of the 
problem with the mass of the    bosons. They write: 

„We next come to the question of the mass of the   quantum, to which we do not have a 
satisfactory answer. (...) In electrodynamics, by the requirement of electric charge conservation, 
it is argued that the mass of the photon vanishes. Corresponding arguments in the   field case do 
not exist even though the conservation of isotopic spin still holds. We have therefore not been 
able to conclude anything about the mass of the b quantum. A conclusion about the mass of the   
quantum is of course very important in deciding whether the proposal of the existence of the   
field is consistent with experimental information.“ 

They made no further progress, and turned their attentions elsewhere. 

Because of the problem with the massless bosons, the conviction prevailed that the Yang-
Mills theory did not describe a physical reality (252). The attempt by Yang and Mills to construct a 
‘gauge theory of nuclear forces’ failed, among other things, for the reason that the nuclear 
interaction is merely ‘phenomenological’, i.e. it is far removed from the actual fundamental force, 
the strong interaction. But that was not known in 1954. That is why this great idea of gauge 
invariance as the generator of fundamental interactions remained dormant for so long. The 
Yang-Mills theory did serve to bring gauge theory to the general attention of theorists, but 
several developments had to come. 

7. Comeback of Yang-Mills theory 

Today, the phrase ‘Yang-Mills’ can be used in two ways: to refer to the specific model proposed 
by Yang and Mills in 1954, or as shorthand for any non-Abelian gauge theory that is relevant to 
contemporary physics ([C7]). Gauge theories are fundamental to the Standard Model because 
the model is based on a generalization of the Yang-Mills proposal, the first non-abelian gauge 
theory dealing with particle symmetries. 

However, the massless nature of the Yang-Mills field was a serious stumbling block to 
applying Yang-Mills theory to the other forces, for the weak and nuclear forces are short range 
and many of the particles are massive. Hence these phenomena did not appear to be associated 
with long-range fields describing massless particles. 

In the 1960s and 1970s, physicists overcame these obstacles to the physical interpretation of 
non-Abelian gauge theory. In the case of the weak force, this was accomplished by the Glashow-

                                                             

252 On February 23, 1954, Yang was invited by Oppenheimer to return to Princeton for a few days and to give a 
seminar on his joint work with Mills. Here, Yang's report [Y2]:  

“Pauli was spending the year in Princeton, and was deeply interested in symmetries and interactions. Soon after my 
seminar began, when I had written down on the blackboard, (   ig  ), Pauli asked  ‘What is the mass of this field 

  ?’ I said we did not know. Then I resumed my presentation, but soon Pauli asked the same question again. I said 
something to the effect that that was a very complicated problem, we had worked on it and had come to no definite 
conclusions. I still remember his repartee: ‘That is not sufficient excuse.’ I was so taken aback that I decided, after a 
few moments' hesitation to sit down. There was general embarrassment. Finally Oppenheimer said  ‘We should let 
Frank proceed.’ I then resumed, and Pauli did not ask any more questions during the seminar. I don't remember what 
happened at the end of the seminar. But the next day I found the following message: 
‘February 24, Dear Yang, I regret that you made it almost impossible for me to talk with you after the seminar. All 
good wishes. Sincerely yours, W. Pauli.’” 



97 

 

Salam-Weinberg electroweak theory with the gauge group SU(2)×U(1), which avoided the 
massless problem by introducing an additional Higgs field  – see Section 7.4. 

The solution to the problem of massless Yang-Mills fields for the strong interactions has a 
completely different nature. That solution did not come from adding fields to Yang-Mills theory, 
but by discovering a remarkable property of the quantum Yang-Mills theory itself. This property 
is called asymptotic freedom. Roughly speaking, this means the decrease of the effective 
interaction strength at high energies or short distances. This made it possible to describe the 
strong force by a non-Abelian gauge theory in which the gauge group is SU(3) – see Section 7.5. 

In order to proceed further, we have to now discuss how group formalism is used to 
construct gauge theories in more mathematical detail. 

7.1. An interlude on group representations 

When studying a physical system, the main theoretical tool that physicists use to formulate a 
mathematical description of the system is the investigation of its symmetries. These symmetries 
correspond to transformations of the system that leave the physics invariant. Such 
transformations generally form an abstract group (the symmetry group), and then one can use 
the language of group theory to describe the physical system. This is why group theory is 
ubiquitous in modern theoretical physics. But in fact, in physics what we are interested in is how 
groups act on something: an object, a theory. This is what representation theory is about: it 
represents the elements of a group as acting on something. ([B5]) 

In particular, the mathematical framework of quantum mechanics is closely related to what 
mathematicians describe as the representation theory of Lie groups (253). These representations 
are the tools needed to describe all fundamental particles, each representation for a different 
kind of elementary particle. The representations tell us what types of fundamental particles exist 
in nature.  

A detailed explanation of the representation theory is beyond the scope of this article, but in 
this section we will introduce some of its main ingredients. Consequently, the discussion of Lie 
groups and their representations is focused on specific examples, not the general theory. 

This section is rather mathematical and formal. The effort will pay, however, since an 
understanding of this group theoretical approach provides a deeper understanding the 
construction of gauge theories relevant for fundamental interactions in the Standard Model. By 
studying group theory and representation theory, we will learn a lot about physical entities. We 
will see how the spin of a particle arises naturally in terms of representations and how particles 
in the Standard Model transform according to representations of the gauge groups U(1), SU(2) 
and SU(3). 

In mathematics, the general linear group of degree n over the set of complex numbers  , 
written as GL(n,  ), is the set of n×n invertible matrices with complex entries, with the group 
operation that of ordinary matrix multiplication: 

                                        GL(n,  ) = GL(n) := {U    ×  : U is invertible }. 

An n×n matrix U is called invertible if there exists an n×n matrix     such that                         
U    =    U = I , where I  denotes the n×n identity matrix (254). The set GL(n) forms a group, 
because the product of two invertible matrices is again invertible, and the inverse of an 
invertible matrix is invertible, with identity matrix I  as the identity element of the group. Note 
that for n  2 the group GL(n) is non-Abelian, since matrix multiplication is then non-

                                                             

253 See [H0], [S3] and [W14] as a general reference for this section. 

254 A matrix U is invertible if and only if its determinant det(U) is not equal to 0. 
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commutative (see Example 3.3). The elements of GL(n) can be thought of as linear 
transformations acting on the n-dimensional vector space    (255). 

We may similarly define GL(n,  ) to be the group of all n×n invertible matrices with real 
entries. Of course, GL(n,  ) is contained in GL(n,  ). 

More generally, if V is a complex vector space then GL(V) denotes the group of bijective (i.e. 
one-to-one and onto) linear transformations L:V  V. If V is n-dimensional then choosing a basis 
for V we can identify GL(V) with GL(n,  ) (respectively with GL(n,  ), if V is real). 

Notice that the set GL(n) with the usual matrix addition [   ]+[   ] = [   +   ] and scalar 

multiplication [   ] = [   ] is not a vector space because the sum of two invertible matrices 

need not be invertible. 

A Lie group is, roughly speaking, a continuous group, that is, a group described by several 
real parameters which can take continuous values (256). The minimal number of such 
parameters is the dimension of the Lie group.  

In this article, we consider the Lie groups that are the most common in physics: the matrix 
Lie groups, i.e. Lie groups realised as groups of matrices. More precisely, a matrix Lie group is a 
closed subgroup G of GL(n) (257). The condition that G be a closed subgroup, as opposed to 
merely a subgroup, should be regarded as a technicality  all for us relevant subgroups of GL(n) 
have this property.  

Of course, GL(n) is itself a matrix Lie group. Since GL(n) is a subset of   × , it has 2n  real 
parameters and hence its dimension dim[GL(n)] is equal to 2n . Here, by ‘dimension’ we mean 
the necessary number of degrees of freedom it takes to parameterize GL(n). We do not mean the 
dimension of the matrices, which is just n. 

Another example is the unitary group of degree n, denoted U(n). It is the group of n×n 
(complex) unitary matrices, with the group operation of matrix multiplication. Recall (see 
Section 6.1) that a matrix U is unitary provided   U = U   = I, where    :=       =       is the 
conjugate transpose and I is the identity matrix. Consequently 

                      U(n) := {U    ×  :   U = U   = I} = {U    ×  :    =    }. 

The unitary group U(n) is a subgroup of the general linear group GL(n,  ) since every unitary 
matrix U is invertible with     =   .  The unitarity condition acts as a constraint and reduces 
the number of real parameters of U(n) to n , so dim[U(n)] = n .  

In Section 6.1 we encountered the special unitary group SU(2). More generally, we can 
consider the group SU(n) of special unitary n×n matrices with the group operation being matrix 
multiplication: 

                                                   SU(n) := {U  U(n) : det(U) = 1}. 

                                                             

255 If U = [   ] is an n×n matrix and   = (  , . . . ,   )    , then L( ) := U   = (              …    
   

  
    

       
  
    describes a linear transformation L:       . Indeed,                L       L    , for          

and         . 
256 Lie groups play a central role in physics. They are named after Norwegian mathematician Sophus Lie (1842–1899). 
A standard definition of a Lie group is as a smooth manifold, with group laws given by smooth (infinitely 
differentiable) maps.  It means that a Lie group is a group which is also a manifold. In particular, there is a small 
neighbourhood around the group identity 1 which looks like a piece of   , with n the dimension of the group.  
If G and H are Lie groups then a mapping r: G   H is called a homorphism if r(ab) = r(a)r(b) for all a, b  G. If in 
addition, r is one-to-one and onto, then r is called an isomorphism. If there exists an isomorphism from G to H, then G 
and H are said to be isomorphic. Two groups which are isomorphic should be thought of as being (for all practical 
purposes) the same group. It is known that not every Lie group is isomorphic to a matrix Lie group  see e.g. [H0] for 
details. 
257 G is closed  provided if (Uk) is a sequence in G such that Uk     for some   ∈ GL n   then   ∈ G.  We say    k) 

converges to   ∈ GL n  if    k –       0  as k   ∞  where   V|| =        
   

      and V = [   ] ∈ GL n . It is a general fact 

that any closed subgroup of a Lie group is a Lie group. 
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The constraint det(U) = 1 implies that dim[SU(n)] = n  1. Of course,  

                                                                   SU(n)  U(n)  GL(n,  ).  

Moreover, both U(n) and SU(n) are compact (258) Lie groups. 

Recall (see Section 6.1) that if H is an n×n matrix then we define the exponential of H, 
denoted    or exp(H), by the usual power series 

                                                                     :=  
 

  
H  

   , 

where          … .  , H  := I is the identity matrix, and H   is the repeated matrix product 
of H with itself. 

The exponential of a matrix plays a crucial role in the theory of Lie groups. The exponential 
enters into the definition of the Lie algebra of a Lie group (see below) and is the mechanism for 
passing information from the Lie algebra to the Lie group. Since many computations can be done 
much more easily at the level of the Lie algebra, the exponential is indispensable ([H0]). 

For a matrix Lie group one defines the corresponding Lie algebra as the collection of 
matrices that give an element of the group when exponentiated (259). More explicitly, for a Lie 
group G  GL(n), the Lie algebra of G, denoted g (260), is the set of all n×n matrices H such that 
      G for all t ∈  , together with an operation, called the Lie bracket  [·, ·] : g×g  g that tells 
us how we can combine these matrices: 

                                        g := {H  GL(n) :       G for every t ∈   }. (261) 

The Lie bracket   

(7.1)                                                          [H, K] := HK   KH  

is commonly referred to as the commutator of H and K.  

It is important to notice that the elements of the Lie algebra are matrices, but the 
multiplication of two Lie algebra elements does not need to be an element of the Lie algebra. 
However, the commutator always is: H, K  g  [H, K]  g. Consequently, the natural (non-
associative) product operation of the Lie algebra is not ordinary matrix multiplication, but the 
Lie bracket [·, ·].  

The set g with the usual matrix addition and scalar multiplication is a real linear space, and 
when equipped with the product operation [·, ·], it becomes an algebra. It is known that g is a 
real linear subspace of GL(n) (262).  

The Lie algebra is a very important tool in studying Lie groups. On the one hand, Lie algebras 
are simpler than Lie groups, because the Lie algebra is a linear space. Thus we can understand 

                                                             

258 G  GL(n,  ) is compact  provided every sequence (Uk) in G has a convergent subsequence    
   for some   ∈ G  

i.e. ||   
– U||  0, as n  ∞. Clearly, compact subsets are closed. 

259 In mathematics, an algebra   over   or   is a vector space equipped with a bilinear product [·, ·] :       . Thus, 
an algebra is an algebraic structure consisting of a set together with operations of multiplication, addition and scalar 
multiplication and satisfying the axioms implied by ‘vector space’ and ‘bilinear’  [W11]). 

260 The Lie algebra which belongs to a group G is conventionally denoted by the corresponding ‘Fraktur’ letter g. 

261 We introduce the additional ‘i’ in the exponent  in order to use Hermitian matrices, which guarantees that we get 
real numbers as predictions for experiments in quantum mechanics. This is the physics convention to take U = 
exp(iH) with H Hermitian, and the mathematics convention is to take U = exp(H) with H anti-Hermitian, i.e. H =   H†. 
Notice that if H is Hermitian then iH is anti-Hermitian. 

262 The Lie algebra g of a Lie group G is isomorphic to the tangent (vector) space T1G at the identity element 1 of the 
group G. An important point is that the Lie algebra is a real vector space, although it is a subspace of a space of 
complex matrices. For example, u(n) is a real vector space, but it is NOT a space of real n×n matrices.  
In physics  Lie algebra is frequently referred to as the space of  ‘infinitesimal group elements’  which actually connects 
the concept of Lie algebra back to its original definition as the tangent space. 
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much about Lie algebras just by using tools of linear algebra theory. On the other hand, the Lie 
algebra of a Lie group contains much information about that group. Thus many questions 
involving a Lie group G can be answered by considering a similar but easier problem for the Lie 
algebra g ([H0]). 

Notice that while a group G determines the Lie algebra g, the Lie algebra does not determine 
the group. It means that if two Lie groups are isomorphic then their Lie algebras are also 
isomorphic (263), but not otherwise.  For example, SU(2) and SO(3) (264) are different (i.e. not 
isomorphic) groups with the same Lie algebra (that is, the Lie algebras su(2) and so(3) are 
isomorphic ([W14])).  

Let G  U(n) be a Lie group and g its Lie algebra. We show that elements of g are Hermitian 
matrices. Indeed, if H  g and t ∈   then by definition       G  U(n), i.e. the matrix      is 
unitary. Recall that a matrix U is unitary if and only if     =    .  Thus          =          = 
     . But by taking Hermitian conjugate term-by-term 

                                    =   
 

  
 itH   

    
 

 =  
 

  
  itH    

    =       
 

we obtain that       
 =       or  equivalently H = H , i.e. H is a Hermitian matrix.  And 

conversely, if H is Hermitian then      is unitary. Consequently, the Lie algebra g consists of 
Hermitian matrices. In particular, the Lie algebra u(n) of U(n) is the set of all Hermitian n×n 
matrices.  

Now, since every Lie algebra is a linear space, it has a basis. In this context, we call the basis 
elements generators. The number of generators defines the (algebraic) dimension of the Lie 
algebra dim(g). We have dim(G) = dim(g).  

For a Lie group G  U(n), the algebra g is generated by Hermitian n×n matrices   ,   = 1, 2, ..., 

m, where m = dim(g). As a consequence, every element H of g is given by a linear combination of 
Hermitian generators: 

(7.2)                                                         H =       :=       
 
   , 

where   ,   = 1, 2, ..., m, are real coefficients.  

For a Lie group G, an important question is that of whether the exponential function maps 
the Lie algebra g back onto the entire Lie group G. In general  the answer is ‘no’. However  if a Lie 
group G is either simply connected (265) or G = U(n) then each group element   ∈ G has at least 
one element H of g such that U =     

(7.3)                                                               U =        
 
   . 

Thus, in this case, we have G = {    : H  g}, i.e. g determines G. 

The reason why Hermitian generators are important in gauge theory is because gauge fields 
are associated with generators of the Lie algebra of the gauge symmetry group under 

                                                             

263 If g and h are Lie algebras then a linear mapping r:g   h is called a Lie algebra isomorphism if r is bijective (i.e. one-

to-one and onto) and r([x, y]) = [r(x), r(y)] for all x, y  g. Two algebras which are isomorphic should be thought of as 
being (for all practical purposes) the same algebra. 

264 SO(3), the 3-dimensional special orthogonal group, is a collection of orthogonal 3×3 matrices U with real entries. 
Orthogonal  means that the columns of the matrix U have to be orthogonal to one another (i.e.     I , and the word 
special  means the matrices have to have determinant 1. The group SO(3) is also known as the three-dimensional 
rotation group. It is the collection of rotations of three-dimensional space that preserve one distinguished point. 
Rotations are linear transformations of    and can therefore be represented by matrices once a basis of    has been 
chosen. 

265 A Lie group G is simply connected  if it is path-connected and every closed path in G may be deformed continuously 
to a point in G. G is path-connected  if there is a path joining any two points in G. In particular, SU(n) is simply 
connected, whereas U(n) is only path-connected. 
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consideration. For example, as we shall see later (Example 7.9), every generator of the Lie 
algebra su(3) is associated with one of the eight gluon fields. 

Be aware that in the physics literature one does not always distinguish clearly between a Lie 
group and its Lie algebra. For example, the elements of some chosen basis for the Lie algebra g 
are simply called ‘generators of the group G’. It can be confusing because ‘generators’ form a 
basis for the linear space g and hence they need not be elements of G (G need not be a linear 
space, after all). However, generators of g are related to elements of G by the exponential map 
(7.3). 

Example 7.1. The Lie algebra u(n) of U(n) is the set of all complex Hermitian nn matrices 

                                                    u(n) = {H  GL(n) : H = H† }. 

Since dim[u(n)] = n , the algebra u(n) has n  generators.  

The simplest example of a Lie group is the group of rotations of the plane, with elements 
parameterised by a single number  the angle of rotation α. It is useful to identify such group 
elements with unit vectors     in the complex plane.  

The group is then denoted U(1), since such complex numbers can be thought of as 11 
unitary matrices. Since any Hermitian 11 matrix is real, we may identify it with a real number. 
Thus u(1) is just the real line (the 1-dimensional vector space  ) and has exactly one generator, 
the 1-dimensional vector        or any other real number ≠ 0.  

Example 7.2. Let G = SU(n) := {U  U(n) : det(U) = 1}. Recall that the trace Tr(H) of an nn 
matrix H = [   ] is defined to be the sum of elements on the main diagonal of H  

                                                                          Tr(H) :=     
 
   . 

It is known ([H0, Th. 3.10]) that det(  ) =       . Thus if Tr(H) = 0, then det(    ) = 1 for all 
real t. On the other hand, if          = det(    ) = 1 for all t, then Tr(H) = 0. Thus the Lie algebra 
su(n) of SU(n) is the set of all complex Hermitian nn matrices with vanishing trace (266) 

                                        su(n) = {H  GL(n) : H = H† and Tr(H) = 0}. 

Since dim[su(n)] = n  1, the algebra su(n) has n  1 generators being traceless Hermitian nn 
matrices. 

Example 7.3. One of the most important examples in physics is the Lie group SU(2). For 
example, transitions in any 2-state quantum mechanical system are described by this group (c.f. 
Section 6.1).  

The Lie algebra su(2) of SU(2) consists of the Hermitian traceless 22 matrices and has 
three generators, because dim[su(2)] = dim[SU(2)] =       . A possible set of generators is 
formed of the Pauli spin matrices  see (5.23)  

                                                  =  
0  
 0

            =  
0  i
i 0

            =  
 0
0   

 . 

Conventionally, one rather takes as generators the matrices    := 
 

 
  ,   = 1, 2, 3. Accordingly, 

every Hermitian traceless 2×2 matrix can be written as a real linear combination of these 
matrices. Thus by (7.3), every matrix U  SU(2) is of the form 

                                                                        U =        
 
    =      ,  

where   stands for three real numbers  = (α , α , α ) and   = (  ,   ,   ). 

                                                             

266 This is how the det(U) = 1 condition of SU(n) turns into a constraint on the generators of the algebra su(n). 
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Notice that we cannot allow complex linear combinations of generators. Take, for example, 
the matrix i  . This matrix is not Hermitian because  i   

  =  i   ≠ i  . Therefore it cannot be 
an element of su(2). 

Example 7.4. Another important group is the Lie group SU(3). As we shall see in Section 7.5, 
SU(3) is the gauge group of the strong interactions. Since dim[su(3)] = dim[SU(3)] =      
8, the algebra su(3) has eight generators   ,   = 1, 2, ..., 8. It is conventional to define the 
generators of SU(3) in terms of the eight Gell-Mann matrices λ 

                              =  
0  0
 0 0
0 0 0

              =  
0   0
 0 0
0 0 0

             =  
 0 0
0   0
0 0 0

  

 

(7.4)                            =  
0 0  
0 0 0
 0 0

              =  
0 0  
0 0 0
  0 0

             =  
0 0 0
0 0  
0  0

  

 

                              =  
0 0 0
0 0   
0  0

           = 
 

  
 
 0 0
0  0
0 0   

 . 

As in the case of SU(2), we set     := 
 

 
  , where we adopted the standard convention that capital 

letters like A, B, C can take on every value from 1 to 8. 

Let g be the Lie algebra of a Lie group G  U(n) and let    (  = 1, 2, ..., m) be generators of g 
(i.e. a basis for g as a vector space), where m = dim(g). Then for each    , [  ,   ] can be written 

uniquely in the form 

(7.5)                                                    [  ,   ] = i       := i       
 
   , 

where [  ,   ] :=            is the commutator of    and   . The constants      are called the 

structure constants of g (267). For example, the commutator of the Lie algebra su(2) is given by 

(7.5’                                                 [  ,   ] = i       := i       
 
    = i      , 

where    = 
 

 
   (  = 1, 2, 3) and      is the Levi-Civita symbol: 

        

    if                                         
0   if     or     or                                    

     if                                 .          

  

Clearly, the structure constants determine the bracket operation on g. If follows from (7.5) 
that the commutator of any two generators of a Lie algebra is a linear combination of its 
generators. Since the generators are Hermitian, the structure constants are real.  

The product [·, ·]:gg  g is completely determined by the multiplication of basis elements 
(i.e. generators) of g. Conversely, once a basis for an algebra g has been chosen, the products of 
basis elements can be set arbitrarily, and then extended in a unique way to a bilinear operator 
on g, i.e., the resulting multiplication satisfies the algebra laws. Thus the commutation relations 
(7.5) (i.e. the structure constants     ) define the algebra g and (7.5) is simply called the Lie 

algebra of the group G.  

The abstract considerations of Lie groups as above may seem at a first glance like just rather 
mathematical and formal. Yet, the Lie group theory is of incredible importance in physics.  In 

                                                             

267 It is important to emphasize that the actual value of      is basis dependent. Thus the term ‘structure constants’ is 

actually a misnomer. 
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physical applications, however, one is more interested in what the group actually does, i.e. the 
group action (268). An important idea is that one group can act on many different kinds of objects 
(this will make much more sense in a moment). This idea motivates the notion of a group 
representation. ([S4])  

Representations allow us to attach a physical meaning to a group element: before 
introducing the concept of representation, a group element g is just an abstract mathematical 
object, defined by its composition rules with the other group members. Choosing a specific 
representation instead allows us to interpret g as a (linear) transformation on a certain space. 
For example, let V be a real 3-dimensional vector space with an inner product and consider the 
group SO(3) of all linear transformations L:V  V that preserve the inner product. Now taking 
as V the set of spatial vectors     an abstract element g ∈  O    can be interpreted physically as a 
rotation    in physical three-dimensional space. ([M1]) 

The use of representation theory to exploit the symmetries of a problem has become a 
powerful tool that has found applications in many areas of science, not just quantum mechanics. 

But what exactly is a group representation? In mathematical terms, a representation is 
defined as follows: let G be a matrix Lie group. A complex [real] representation ( , G, V) of G is a 
group homomorphism (269) 

(7.6)                                                                       :G  GL(V),  

where V is a finite dimensional complex [real] vector space. From now on we will assume that a 
representation is complex unless otherwise specified. 

Since V is finite dimensional, say V =   , we can choose a basis of V and identify GL(V) with 
GL(n). Thus a group representation (7.6) is just a set of nn matrices, one for each group 
element, satisfying the multiplication rules of the group:  (gh) =  (g) (h) for all g, h  G. The 
dimension of V is called the dimension of the representation.  

One should think of a representation as a (linear) action of a group on a vector space, since 
to every gG there is associated a linear operator    :=  (g):V  V, which acts on the vector 

space V ([H0]). We also say that G acts on V. In other words, a representation identifies with 
each element of the abstract group G a linear transformation of a vector space. In this manner, G 
is ‘represented’ as a set of linear operators acting on V. The framework of representation theory 
enables one to examine the group action on very different vector spaces.  

A common source of confusion is that representations ( , G, V ) are sometimes referred to by 
the map  , leaving implicit the vector space V that the matrices  (g) act on, but at other times 
referred to by specifying the vector space V, leaving implicit the map  . ([W14]) 

In physics, the elements of V are interpreted as values of fields (t,  )  (t,  )  V and 
representation theory provides the appropriate mathematical formalism to describe how 
symmetries act on them. In particular, finding all representations is then equivalent to finding all 
fields on which the symmetry can act. These fields in turn can be used to construct any field 
theory that respects the symmetry. 

Each operator    can be thought as an nn matrix          acting on V via matrix-vector 

product  

                               v :=         v
  =           

 
   , ... ,        

  
 
      V, 

                                                             

268 To a physicist, the vector space the group acts upon is called the representation. This is often a space of fields or 
coordinates.  

269 Given two groups, G and H, a group homomorphism  from G to H is a function f:G   H such that for all u and v in G it 
holds that f(uv) = f(u)f(v), so that the function f preserves the group structure. A group homomorphism is called a 
group isomorphism if it is one-to-one and onto. 
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where vV is a vector v = (  ). Notice that the components of the vector v need not be simply 

numbers but can be, for example, Dirac spinors. 

The fundamental relationship between quantum mechanics and representation theory is 
that whenever we have a physical quantum system then representation theory provides 
information about quantum states when G acts on the system ([W14]). 

The most interesting classes of representations are those for which the transformations  (g) 
are unitary, i.e. if  :G  U(n)  GL(V). For a unitary representation ( , G, V), we can use (7.3) to 
write  (g) as  (g) =    , where H is a Hermitian matrix. We thus see that a unitary 
representation ( , G,  ) of G acting on a Hilbert space   of quantum states (see Section 5.9) 
gives us not just unitary matrices  (g), but also corresponding Hermitian operators H on  . 
Consequently, Lie group actions provide us with a class of quantum mechanical observables 
related to these operators. ([W14]) 

Since a matrix Lie group G is a subgroup of GL(V), it may represent itself, with the 
homomorphism   being the identity map g   (g) = gG  GL(V). Then elements of G acts on V 
since they are elements of GL(V). In physics, this representation is called the fundamental 
representation. In mathematics, it is called the defining or standard representation. Accordingly, 
G can act on very different vector spaces via fundamental representation. 

Another example of representation of G is the trivial representation ( , G, V) with   being 
the constant map g   (g) =    , where     is the identity on V:    (v) = v for vV. 

It is important to note that the dimension of a representation ( , G, V) is not the same as the 
dimension of the Lie group G. The dimension of the representation is, by definition, equal to the 
dimension of the vector space V the group acts on, while the dimension of G is the number of real 
parameters needed to specify an element of the group. For example, the fundamental 
representation ( , G,   ) of SU(2) is two-dimensional because    is two-dimensional. On the 
other hand, dim[SU(2)] =    1 = 3.  

Different representations of a given Lie group need not have the same dimension because 
they can act on linear spaces of any dimension. So one has to be careful when discussing the  
dimensions of G and V, as there is a risk of confusion when both are considered simultaneously. 
([H17]) 

Example 7.5. Representations (270) of SU(2) are classified by a non-negative integer n = 0, 1, 

2, ..., and have dimension n+1. It is common in physics to label these representations by s = 
 

 
 = 

0, 
 

 
, 1, ... and call the representation labelled by s the spin s representation. 

The lowest dimensional representation is spin 0 representation called scalar representation. 
The objects (scalars) the group acts on in this representation are used to describe elementary 
particles of spin 0. 

The next higher-dimensional representation is called spin 
 

 
 or spinor representation is just 

the fundamental representation on the space    of spinors, i.e., complex vectors with two 
components. The objects (spinors) the group acts on in this representation are used to describe 
elementary particles of spin-½ (i.e. fermions). The significance of the group SU(2) is that every 
spinor rotation U(      defined (see Example 5.3) by 

                                                                         U(      =          

for some axis   and some angle   is a member of SU(2). Thus SU(2) is the group of rotations on 
spin-½ systems. 

                                                             

270 More precisely, the irreducible representations of SU(2).  An irreducible  representation is a representation ( , G, 
V) that has no proper nontrivial subrepresentation. A representation ( , G, W) is a subrepresentation of ( , G, V) if  W 
is a vector subspace of V and   (w)  W for all gG and wW – see e.g. [W14] for details. 
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The third representation is called spin 1 or vector representation, because the objects 
(vectors) the group acts on in this representation are used to describe elementary particles of 
spin-1 (i.e. bosons). It maps elements of SU(2) into GL(  ). It is actually the adjoint 
representation     of the Lie algebra su(2) – see Example 7.6. However, representations of su(2) 
are in one-to-one correspondence with representations of SU(2). (271) 

One reason that SU(2) representations are especially tractable is that there is a simple 
explicit construction of the irreducible representations. Consider the space    of homogeneous 
polynomials in two complex variables with total degree m ≥  . That is,    is the space of 
functions of the form 

                                      =     
       

           
     

   …      
  

with   ,       and the   ’s arbitrary complex constants. The space    is an (m+1)-dimensional 
complex vector space. If m = 2 then the space    is 3-dimensional and consists of functions of 
the form 

                                                         =     
               

 . 

Let   denote the vector   =             and for U  SU(2) let     =       be the inverse of U. 

Now define a linear transformation   :       by the formula 

     [     ]    :=          =                            = 

                    
                                               

  =   

           
                

    
    

                                                   + 

           
                

    
   

         
               

 , 

where   ,   ,    are complex constants. Thus          . Now, compute 

            [          ]     = [         ]     
                                               =            )  
                                               =   W          
                                               = [      ]   . 

It implies that the mapping  :SU(2)  GL(  ) satisfies    W  =       W . Thus ( , SU(2),   ) 
is a 3-dimensional (complex) representation of SU(2). Notice that this calculation would not 
yield the desired result if one defined [     ]    =       . 

Reasoning similar to the above, one can show that for an arbitrary m ≥   ( , SU(2),   )  is 
an  (m+1)-dimensional representation of the 3-dimensional group SU(2). 

The crucial observation is that SU(2) is isomorphic to another group, which is typically 
designated as Spin(3). Spin(3) is a double cover of the rotation group SO(3), meaning that it is a 
larger group where each element of SO(3) is associated with two distinct elements of Spin(3). 
The mapping κ:Spin(3)  SO(3) which projects back onto SO(3) is a group homomorphism, 
which is referred to as a covering map. If we have a representation ( , V) of SO(3), then the 
composition  ∘κ gives us a representation of  pin    ≅      . Thus  the classification of 
representations of SU(2) can be considered a classification of representations of SO(3) as well. 
To be more precise, representations of SU(2) of integer spin are also representations of SO(3). 
However, representations of SU(2) with half-integer spin are not representations of SO(3). 

Generally, we can look at representations of a given group on any vector space. But there is 
exactly one distinguished vector space that comes automatically with each group G: its own Lie 

                                                             

271 This is true for every simply connected matrix Lie group – see e.g. [H0]. 
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algebra g that is nothing but a real vector space equipped with a Lie bracket. This representation 
is called the adjoint representation ([S5]). 

Let G  U(n) be a matrix Lie group with Lie algebra g. First, define for all gG the 
conjugation (linear) mapping    : g  g that sends Xg to gXg    g (272) 

(7.7)                                                               X     (X) := gXg  , 

where gXg   is the product of matrices. Since g is a unitary matrix, we have g   = g  and hence 
   (X) = gXg . Moreover 

(7.8)                                                                         
  ge g  . 

The adjoint representation of G is defined as (  , G, g), where   

(7.9)                                                                  : G  GL(g) (273)  

is given by    g  :=    . Since      =       , the mapping    is a Lie group homomorphism.  

Similarly to a group representation, one defines a representation ( , g, V) of a Lie algebra g 
as a Lie algebra homomorphism (274)  : g  gl(V), where V is a finite dimensional vector space 
and gl(V) is the Lie algebra of GL(V). And in this case there is also a natural representation of g 
on itself: the adjoint representation (  , g, gl(g)), where the homomorphism  

(7.10)                                                                   :g  gl(g),  

is given by  

                                                                g   Y        =      gl(g) 

where     is defined as the linear map from g to itself given by 

(7.11)                                                        g   X     (X) := [X, Y]. 

Both adjoint representations    and    are closely related to each other by the exponential 
function  

(7.12)                                                                            .    

Since every action    : g  g is a linear map, so we can represent it using matrices. Let    (  

= 1, 2, ..., dim(g)) be generators of g (i.e. a basis for g as a vector space). Then the matrix      = 

[(      ], corresponding to     
, can be explicitly constructed from the structure constants (7.5) 

by defining the matrix elements as 

(7.13)                                                               (       :=  i    . 

By this, we mean that the element at row number   and column number   of the matrix     

representing the map     
 is given by the number  i     (      = 1, 2, ..., dim(g)). Hence the 

structure constants always define the adjoint representation   .  Notice that     is a 

dim(g)dim(g) matrix. 

Example 7.6. Since the algebra su(2) is 3-dimensional, the adjoint representation   : 
su(2) gl(su(2)) can be represented by three 33 matrices. Let us compute them explicitly by 
calculating how basis elements of the (real) linear space su(2) act on su(2). Taking our basis to 

be    = 
 

 
   for   = 1, 2, 3 (see Example 7.3), we can write an element H  su(2) as  

                                                            H = α    + α    + α   , 

                                                             

272 See e.g. [W14] for a proof that gXg   belongs to g. 

273 Reminder: GL(g) denotes the Lie group of all bijective (i.e. one-to-one and onto)  linear maps on the linear space g. 

274 A linear mapping  :g  gl(V) is a Lie algebra homomorphism if it maps the Lie brackets on g to the Lie brackets on 
gl(V):  ([x, y]) = [ (x) ,  (y)] :=  (x) ∘  (y)     (y) ∘  (x), where ∘ is composition of linear maps. 
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where α     (  = 1, 2, 3). The adjoint action on H by    is the map     
(H) = [  , H] and it takes 

the vector α = [α α α ] to a new vector   = [      ], where     =    
  for some 3x3 

matrix   . Since the commutator [, ] is bilinear, we can apply  7.5’  to compute     
(H) as 

                                                   
(H) = [  , H] = [  , α    +  α    + α   ]  

                                                               = α [  ,   ] +  α [     ] + α [     ]  

                                                               = 0 + iα       iα   . 

Thus   = [0  iα iα ] and therefore the matrix corresponding to     
 is 

                                                                            =   
0 0 0
0 0  i
0 i 0

  

in this basis. The matrices for     
 and     

 can be obtained similarly 

                                                        =   
0 0 i
0 0 0
 i 0 0

 ,        =   
0  i 0
i 0 0
0 0 0

  

Notice that the    entry of the matrix    reads        =  i    . Now, for any Y = κ    +  κ    + 

κ     su(2), the adjoint action on H su(2) by Y is the map    (H) = [Y, H] = κ     
(H) +  

κ     
(H) + κ     

(H). Thus the map     is represented by a linear combination of the 

matrices   ,   ,   . 

Notice that the adjoint representation maps         GL(  ) for   = 1, 2, 3. Thus it can be 

used to define the spin 1 representation of SU(2) which map elements of SU(2) into GL(  ) – see 
Example 7.5.  

The reason why representations are important in the particle physics is because particles 
can be labelled in terms of how they transform under the group of symmetries, i.e. in terms of 
the corresponding representations.  

There are two sources of symmetries in the Standard Model. One is the Lorentz group (or 
Poincare group) corresponding to symmetries of spacetime. So we can label particles according 
to how they transform under the Lorentz group. Another source of symmetries is the gauge 
group of the Standard Model SU(3)SU(2)U(1). The SU(2)U(1) factor comes from the 
electroweak force (see Section 7.3), while the SU(3) factor corresponds to the strong force (see 
Section 7.4). Therefore, particles are labelled by how they transform under this gauge groups: in 
other words, they are labelled by representations of SU(3), SU(2) and U(1). 

This is a general feature that gauge particles (i.e. bosons) transform according to the adjoint 
representations, whereas the matter particles (i.e. fermions) come in the fundamental 
representations. ([B5]) 

One confusing thing is that the term adjoint representation is ambiguously used in literature. 
It is not always clearly stated whether    or    is meant, and it is to be deduced from the 
context. Notice the difference: the mapping   , which takes an element gG and maps it to    , 

is a representation of G acting on g. The mapping   , on the other hand, which takes an element 
Yg and maps it to    , is a representation of g acting on itself. Thus among all these objects of 
linear mappings one needs to be careful when reading a physics textbook. 

To summarise: 

 There are always only m = dim(G) = dim(g) generators    for a group G (i.e. for the 

algebra g). They belong to g and give elements of G via exponentiation. Thus generators 
are nn matrices if and only if the elements of G are nn matrices.  

 dim[U(n)] = dim [u(n)] = n  and dim[SU(n)] = dim [su(n)]  = n   . 
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 A group G can act on a linear space V of any dimension, for example via the trivial 
representation.  

 In the adjoint representation    of G, the group G acts on the linear space g.  

 In the adjoint representation    of g, the algebra g acts on itself. The actions     are 
defined by the structure constants (7.5) as mm matrices, where m = dim (g) = dim(G).  

 When we define representations of groups, we map group elements to linear operators 
in GL(V), that is, invertible matrices. Invertibility is required because of the group 
properties, since we map the group operation to matrix multiplication. For Lie algebras, 
we map elements of the vector space to linear operators in gl(V), i.e. matrices that are 
not necessarily invertible. This is an important distinction. ([B5]) 

7.2. Generic construction of gauge theories 

We are now in a position to discuss how Lie groups are used to construct a G-gauge theory  
(275) for an arbitrary compact Lie group G  U(n) (276). Its Lie algebra g is generated by 
Hermitian generators (n×n complex matrices)   ,   = 1, 2, ..., m, where m = dim(G) = dim(g). We 

shall assume that G satisfies (7.3), i.e. every element U  G is of the form  

                                                                            U =        
 
   . 

Let  be a ‘matter’ field described by a multiplet with n components  277) 

(7.14)                                                         (t,  )  (t,  ) =  


 


 

 


 

   

with Lagrangian density 

                   =  
               :=  [  

  
 
   

 
   

 
 

 
    

 
 

 
  ] , 

where   = [
 
 , 

 
 , ..., 

 
 ] and   is some function of the square of the modulus of the field. 

Differentiation of the column means, as usual, differentiation of each of its components (the 
same for rows or matrices). The column of fields (7.14) can be conceived of as a single field with 
values in the n-dimensional complex space of columns. It is assumed that the mass of each of the 

fields 
 
        …  n  is identical and equal to  . ([R3]) 

For example,  can be the Schrödinger wave function of a spin-0 particle (t,  )  (t, )  

or the isospin doublet wave function       considered in Section 6.1. 

Every element U of the group G defines the global transformation   = U of the field . 
Since U is an nn matrix we can write this transformation as 

(7.15)                                                              = U = [   ], 

where U = [   ] and 
 
  =     

 :=      
 
   . Thus the transformation (7.15) mixes the 

components 
 

 inside the multiplet . Notice that (7.15) is a transformation under the action of 

                                                             

275 A G-gauge theory  is a field theory that has a gauge symmetry induced by a gauge group of transformations G, 
which is required to be a Lie group. The field equations of a G-gauge theory are covariant with respect to the group G.    

276 Since U(n) is compact, it is enough to assume that G is closed in U(n), for closed subsets of a compact set are 
compact. We assume that G is compact because then it has a unitary, finite dimensional and irreducible 
representation. We will use this property only implicitly. A detailed discussion of irreducible  representations (see e.g. 
[S3]) would lead us too far astray here. 

277 Notice that the components of the wave function  need not be simply complex numbers but can be something 
more intricate such as, for example, Dirac spinors:  (t,  )    ,   = 1, 2, ..., n .  
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the fundamental representation of the group G. Indeed, according to (7.15), the matrix  (U) = U 
acts on the field . (278) 

If we wish to promote the global symmetry to a local one by letting U become a function of 
spacetime events (t,  ), it is convenient to write U in exponential form 

(7.16)                                                     U(t,  ) =             
 
   . 

Then (7.15) amounts to 

(7.17)           (t,  )   (t,  ) = U(t,  )(t,  ) =             
 
   (t,  ) =      (t,  ), 

where   := (  ,   , ...,   ) are generators of g and   := (α , α , ..., α ) are real functions (t,  )  
  (t,  ),   = 1, 2, ..., m.  

The Lagrangian density of a Yang-Mills theory should be unchanged when a vector (t,  ) 
transforms to  (t,  ) =      (t,  ). This mapping has the ‘generali ed phase transformation’ 
character of (6.9), now with m ‘phase angles’  .  

The gauge covariance requires that the field equations for the transformed fields must have 
the same form as the original ones. Since the field equations always contain derivatives of the 
fields, the transformation (7.17) leads to additional m terms that break the covariance due to the 
(t,  )-dependence of the parameters   (t,  ). Indeed, under the transformation (7.17), the 

derivative of the field becomes (by the usual product rule) 

                  
 (t,  ) =  [U(t,  )(t,  )] = U(t,  ) (t,  ) + [ U(t,  )](t,  )  

i.e.   does not transform in the same manner as . The derivative  
  contains now the 

term  

                                      U(t,  ) =   
           

 
    = iU(t,  )              

 
   , 

which includes m derivatives    (t,  ), one for each generator   .  Consequently, in contrast to 

the U(1) case, in order to make the Lagrangian locally G invariant, it is no longer sufficient to 
introduce one single compensating field. Instead, a set of m fields is required to cancel the 

unwanted term   U). 

To restore the covariance the field equations we replace the conventional derivative   with 

the covariant derivative    and require that under the transformations (7.17) it becomes       

=    . This can be accomplished by introducing a gauge field   (t,  ) and writing    in the 

form    =    ig  , where the coupling strength g is added for later convenience.  

The next step is to determine the structure of the field    (referred to as the Yang–Mills 

field) by defining the range of its values. This may be achieved by examining the manner in 
which the field    must behave under gauge transformations (7.16). It turns out (see e.g. [R3]) 

that (t,  )    (t,  ) is a field with values in the Lie algebra g of the group G. More precisely, the 

component functions   (t,  ),   (t,  ),   (t,  ) and   (t,  ) take values in the Lie algebra g. 
(279) 

Thus,   (t,  ) is a Hermitian n×n complex matrix [   
 
 t   ],     = 1, 2, ...,  , for each (t,  ) 

and μ = 0, 1, 2, 3. An alternative perspective on the gauge field (t,  )     (t,  ) is to regard it as 

                                                             

278 Here   acts on the vector space of quantum mechanical wave functions. Although this vector space is infinite 
dimensional, essentially in every case of physical interest we can take a properly chosen finite dimensional vector 
subspace. Consequently, we can apply finite dimensional representations also to this case. We can think of the vector 
space V,   acts on, as the n-dimensional complex space of columns (7.14). Then  can be understood as a field (t,  )  
(t,  )  V, i.e.  takes values in the space of the representation (   G, GL(V)). 

279 Recall that the same symbol is used for the vector    and its components   ,  μ  0      . 
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matrix-valued, where   (t,  ) is an nn matrix whose elements are vector fields (t,  )   

   
  t    [   

  t       
  t       

  t       
  t   ]    . 

The elements of the matrix   (t,  ) are still unknown, and to find them will be our next 

problem. Since each component (t,  )    (t,  ), μ = 0, 1, 2, 3, takes values in the Lie algebra g, 

it can be written as a linear combination of the generators   ,   = 1, 2, ..., m, in the form 

(7.18)                                 (t,  ) =   
  t      +   

  t      + ..., +   
  t     , 

where for each value of the indices μ = 0, 1, 2, 3 and   = 1, 2, ..., m, (t,  )    
 
(t,  ) is a real-

valued function (recall that g is a real vector space). These functions build m compensating 
gauge vector fields  

                                     (t,  )    
 
(t,  ) = [  

 
(t,  ),   

 
(t,  ),   

 
(t,  ),   

 
(t,  )],  

one vector field for each generator   ,   = 1, 2, ..., m. 

Thus, the matrix gauge field (t,  )    (t,  ) can be expressed as a linear combination of m 

vector gauge fields (t,  )    
 
(t,  ). It is important to notice that the gauge fields   

 
(t,  ) are 

necessarily real-valued vector fields, and that they arise as ‘coordinates’ of the more 
fundamental objects   (t,  ). Selecting a different set of generators of g leads to the same   , 

but to a different set of fields   
 
. The vector fields (t,  )    

 
(t,  ),   = 1, 2, ..., m, are associated 

with the physical gauge bosons of the theory. ([W8]) 

Since each generator     belongs to g, so we can write it as an nn Hermitian matrix    

[   
 
],     = 1, 2, ...,  . Consequently the elements of the matrix    = [   

 
] can be written as  

                                                                  
 

 =     
  

     
 
,  

i.e.  the elements    
 

 of    are linear combinations of the fields   
 
 (   = 1, 2, ..., m).  

Let us denote    := (  
  t   ,   

  t   , ...,   
  t   ). Then using (7.18) we may write    as  

(7.18’)                                                       =      
  

    =  ·  .  

Now applying the gauge principle (cf. Section 5.4) we have to replace the derivative   by 

the covariant derivative    

(7.19)                                                              := I    ig   

where I  is the nn identity matrix and g a coupling constant. From the context it should be clear 
that now    is matrix-valued. The derivative    acts on the n-component field (7.14). The 

notation    should be understood as                …        
 

, where       =   
  

ig    
 


 
 
    (280). The parameter g determines the coupling strength between the ‘matter’ field 

 and the gauge field   . 

The key property required for the covariant derivative    is that under the transformation 

(7.15) it becomes 

(7.20)                                                                         =    , 

where U =      . It imposes additional constraints on the gauge field   , because (7.20) 

amounts to  

(   ig  
 )U = U(   ig  ) 

                                                             

280 By abuse of notation,       is often written as    . 
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where   is multiplied implicitly by the identity matrix I . It turns out that the required 

transformation for    is ([R3]) 

(7.21)                                                          
  = U   

   
 

 
(  )  . (281) 

Then    transforms in the same way as . In particular,    transforms under a global gauge 

transformation U as  

(7.22)                                                                        U   
 .  

Since    =    , we infer that    transforms in the adjoint representation    of G. We note one 

of the main differences of the non-Abelian field    from the vector potential of electrodynamics 

  . Under global transformations    does not change, but non-Abelian potentials transform non-

trivially in the adjoint representation in line with (7.22). The reason is that U and    =     
cannot be brought together in (7.22), because they do not commute with the field   . 

It is a general rule that in a G-gauge theory, gauge covariance requires that matter fields 
transform in the fundamental representation, whereas gauge fields are required to transform 
according to the adjoint representation    of G.  

The covariant derivative    of the field  describes the coupling of the gauge bosons to the 

particles of the field  (i.e. its component fields). In contrast, the commutator [    ] describes 

the interaction of the gauge fields with themselves (if the group G is non-Abelian).  

A physical theory that incorporates the gauge field    must treat    as a dynamical field, 

and thus the action should contain a kinetic term for   . In other words, the action should 

include derivative terms for   , which can be found in the field strength. 

Therefore, the next step is to identify the strength tensor     for the field   . In analogy with 

electrodynamics, it is anticipated that the strength tensor will contain a term of the form  

(7.23)                                                                       . 

It is evident from (7.22) that the expression (7.23) must transform according to the adjoint 
representation of the group in the case of global transformations. We require the strength tensor 
to transform according to the adjoint representation for all gauge transformations. That is to say, 
    must be 'gauge covariant'(282) 

                                                                        
  = U t       

  t   .  

However, expression (7.23) itself does not have this property. Indeed, differentiating (7.21), 
it can be shown ([R3]) that 

                             
      

  =  [U   
   

 

 
(  )  ]    [U   

   
 

 
(  )  ]  

                                                        ≠            
 . 

Therefore, we cannot simply define     as the expression (7.23) above. The appropriate 

generalisation of the electromagnetic field strength tensor     turns out to be 

(7.24)                                                  :=         + g     ,   

where     := (   
 ,    

 , ...,    
 ),  

                                              
 

 =    
 
      

 
   g       

   
  

     ,   = 1, 2, ...,   

and      are the structure constants of g  see (7.5). Writing     :=  ·    we obtain 

                                                             

281 If G is Abelian, for example if G = U(1), the transformation     U   
    

 

 
( U)   amounts to            

(see Section 6.2).       
282 In the non-Abelian case there is no gauge invariant field tensor. Thus the next best possibility is to consider a 
‘gauge covariant’ quantity ([H13]). 
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                                                    =         + ig[    ] = 
 

  
[  ,   ]. (283) 

At this point, the manner in which we introduce this field strength tensor may appear 
somewhat opaque. But, of course, there is a deep reason why the correct field strength tensor 
must be the commutator of the covariant derivative. However, a proper discussion lies beyond 
the scope of this paper (284). ([S3]) 

The field strength tensor (7.24) determines the ‘kinetic term’ of the Lagrangian density of 
the G-gauge theory 

(7.25)                                             
        =   

 

 
    

   :=  
 

 
    

 
   

    . 

The remaining terms of the (invariant) Lagrangian density are defined using the covariant 

derivative (7.19). A major new feature of (7.25) as compared with the Lagrangian density    
    

 
is that it is not a free Lagrangian, but contains self-interactions, precisely because of the 
additional term in (7.24) ([J3]). 

In the above we have not specified what the label   on    refers to. It has simply been 

assumed that a multiplet (t,  ) is transforming according to some representation of the 
symmetry group, with   denoting the different components of the field   . In the context of 

electroweak theory, where the non-Abelian part of the group is SU(2) the   
 
 will form a triplet, 

where   essentially labels the weak charge. For QCD where the non-Abelian group is SU(3),   will 
be a colour-anticolour label (see Example 7.9). 

To summarise: we need   vector fields    = (  
 ,   

 , ...,   
 ) to cancel the terms that 

make our Lagrangian non-invariant under local G transformations and must introduce these 
new fields in such a way that they are able to cancel terms that involve derivatives of   (t,  ). 

The fields   
 
 (  = 1, 2, ..., m) are associated with the physical gauge bosons of the theory.  

The (covariant) field equations (equations of motion) of this gauge theory are then derived 
from the (invariant) Lagrangian density as Euler-Lagrange equations. The group G is called the 
gauge group (or structure group) (285) of the theory, which in turn is called G-gauge theory. After 
the field equations have been formulated, all fields of the theory have to be quantised so that the 
G-gauge theory becomes a QFT. 

Notice that the Lagrangian density of a G-gauge theory must not contain the (non-invariant) 

mass term ½     
 . Thus the bosons associated with the gauge fields   

 
 (  = 1, 2, ..., m) 

must be massless. 

As we have seen above, one can construct a gauge theory starting with an arbitrary 
(compact) Lie group G  U(n). It turns out, however, that only a few of them are relevant for the 
Standard Model. These are U(1), SU(2) and SU(3). Let us discuss them briefly. ([H1]) 

Example 7.7. Let G = U(1) be the (Abelian) group of all unitary one-dimensional matrices. As 
we have seen in Section 5.5, the group U(1) corresponds to the circle group, consisting of all 
complex numbers with absolute value 1 under multiplication. It is a 1-dimensional, compact Lie 
group and the algebra u(1) =   has exactly one generator  , which a (nonzero) 1×1 matrix, i.e. 

                                                             

283 The factor   ig  is needed to cancel the factors that come from the definition (7.19). 

284 In mathematical terms, the field strength tensor describes the curvature of a connection on a fibre bundle. The 
curvature is derived from the connection essentially by taking commutators of certain differential operators related to 
the connection.  In our case,   =  ·   is a connection on the G principal bundle. This is a rather abstract object, 

taking values in the Lie algebra g. For G = SU(n), a more down to earth perspective is to view    simply as a traceless 

nn Hermitian matrix. In physical terms   ero curvature indicates ‘no physical effect’  while      0 implies the 

presence of a physical effect. 

285 Strictly speaking, the gauge group is the much bigger group of maps from spacetime into G because we deal with 
local symmetry. It is the infinite product  G  , where G  is a copy of G for x = (t,  )   . 
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  is just a (real) number (Example 7.1). Consequently, we need only one ‘compensating’ gauge 
vector field   .  The component fields    t   ,    t   ,    t       t    are real-valued, i.e. 

they take values in the Lie algebra of U(1). 

The fundamental representation of U(1) is one-dimensional. Thus if (t,  )  (t, )  is a 
complex field (e.g. the Schrödinger wave function of a spin-0 particle) then  transforms in the 
fundamental representation as 

(7.26)                                                (t,  )   (t,  ) =           (t,  ), 

i.e. the fundamental representation yields local phase transformations considered in Section 5.4. 

The adjoint representation of U(1) is trivial:     is the identity mapping for each UU(1). 
Indeed,    (X) = e  e   = X, where U = e . The gauge field    transforms in the adjoint 

representation according to (7.21) 

(7.27)                                                 U   
   

 

 
(  )   =      α, 

where U(t,  ) = e         is a local U(1) transformation corresponding to the generator   of u(1). 

There are two important examples of U(1)-gauge theories. First, let us take the generator T 
=  , where   is electric charge. The resulting U(1) gauge theory is then electromagnetism, 
denoted       . The gauge transformation (7.17) has now the same form as (5.10) 

                                          (t,  )   (t,  ) = U(t,  )(t,  ) =          (t,  ). 

The ‘compensating’ gauge field    can be interpreted as electromagnetic 4-potential   . 

Moreover, g =   , therefore (7.19) and (7.24) amount to 

                                                                  :=    ig   =   + i   , 

and 

                                                  
  =    

       
 , 

respectively. Finally  

                                                                  

         =  
 

 
     

   =     
    

. 

The second important example is the       gauge theory, where   stands for the weak 
hypercharge, also denoted   . Without getting into details, let us only say that   is a quantum 
number relating the electric charge and the third component of weak isospin (see Section 7.4). 
Now   =   and (7.17) amounts to  

                                          (t,  )   (t,  ) = U(t,  )(t,  ) =          (t,  ). 

Again, we need only one ‘compensating’ gauge field, that we denote   .  The covariant derivative 

is then 

                                                                        :=    ig    , 

where g’ is a coupling constant  and the Lagrangian density 

                                                                       
        =  

 

 
     

  , 

where  

                                                                        
  =    

       
 . 

Example 7.8. Now let G = SU(2) and take the generators    := 
 

 
  ,   = 1, 2, 3, where    are 

the three Pauli matrices (see Example 7.3). Let us write the G-gauge transformation (7.17) for 

SU(2) of a doublet  = [ 


 ]  of two spin-
 

 
 fields (e.g. nucleon isospin doublet       = 

[ 


 ]  – see Section 6.1) 
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(7.28)                                      (t,  )   (t,  ) =             
 
   (t,  ). 

Putting  := (α , α , α ) and T := (  ,   ,   ) = 
 

 
(  ,   ,     = 

 

 
, we can see that (7.28) amounts 

to the Yang-Mills transformation (6.10) 

                                     (t,  )   (t,  ) =            (t,  ) =   
 

 
         (t,  ). 

In other words, an isospin doublet wave function transforms (locally) in the fundamental 
representation of the group SU(2). 

The Lagrangian density, in the absence of any interactions, is (cf. Eq. (5.29)) 

(7.29)     :=       
    

 
 
  +       

    
 

 
  = (i  

 

 
 

 
      


 

) + (i  
 

 
 

 
      


 

), 

where    is the mass of the field 
 
. Notice that 

 
 and 

 
 are four-component Dirac spinors 

(5.27) and the Dirac matrices  act on these components. Denoting by M the following mass 
matrix 

                                                                      M =  
  0
0   

 , 

we can write the Lagrangian density (7.29) for the doublet  as 

(7.30)                                                        = i 
 
    M. 

If the two masses are equal   =   =  , the Lagrangian density becomes 

                                                                     =  (i
 
    ). 

This looks just like the Dirac Lagrangian density (5.29). However,  is now a doublet, i.e. a two-
element column vector ([G6]).  

This Lagrangian density is not gauge invariant under local SU(2) transformations. In order to 
guarantee its gauge invariance we have to apply the gauge principle (cf. Section 5.2). First, we 

have to introduce three vector fields   
 
, j = 1, 2, 3, one field for each generator   . And then we 

have to replace the derivative   by the covariant derivative    

                                                 :=    ig   
 
     

 
 =    ig

 

 
 ·   , 

where    = (  
 ,   

 ,   
 ) and g is a coupling strength. The gauge matrix field    := 

 

 
 ·   

transforms according to (7.21), i.e. in the adjoint representation of SU(2). The complete SU(2) 
Lagrangian density becomes 

 7. 0’                                           
  =   (i   

       
 

 
    

  ,  

where     :=         + g      is the SU(2) field strength tensor (cf. Eq. (7.24)). The 

Lagrangian density       
  is invariant under SU(2) gauge transformations. It describes two 

equal mass Dirac fields interacting with three massless vector gauge fields. 

Notice that the SU(2) field strength tensor is equal to Eq. (6.16) and the Lagrangian density 
 7. 0’) amounts to the Lagrangian density    

  (see Eq. (6.19)). Consequently, the original Yang-
Mills theory corresponds to a gauge theory constructed with the gauge group SU(2). 

The Yang-Mills theory in its original form turned out to be of little use. After all, it assumes 

that there exist two (distinct) elementary spin-
 

 
 particles of equal mass which have never been 

observed in nature. However, the Yang-Mills theory is still important because it serves as a 
prototype of non-Abelian gauge theories, that is, theories for which the generators of the 
underlying symmetry group do not commute. When non-Abelian gauge theory finally came into 
its own, it was in the context of colour SU(3) symmetry in the strong interactions ([G6]). 
Moreover, as we shall see in Section 7.4, the gauge group SU(2) occurs in the GSW model of 
electroweak interactions. There are, however, some important differences. First, the gauge 
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group is not simply SU(2), but             , so there are four gauge bosons. Second, in a pure 
gauge theory the gauge bosons are massless.  To overcome this difficulty, the GWS model makes 
use of the phenomenon of spontaneous symmetry breaking. ([J3])  

Example 7.9. Quantum chromodynamics (QCD) is a Yang–Mills theory with gauge group 
SU(3)  cf. Section 7.5. In QCD, the strong interaction is invariant under rotations in colour space 
i.e. the same for all three colours (r, g, b)  = (‘read  blue  green’) (286). This SU(3) symmetry is 
exact, unlike the approximate uds flavour symmetry. 

The Lie algebra su(3) has 32 – 1 = 8 generators. They are given by eight 3×3 Gell-Mann 
matrices (7.4). The gauge transformation (7.17) acts now on quark field , which is an SU(3) 
triplet  = [ 


 


 ]  with colour index. It means that  transforms (locally) in the 

fundamental representation of the group SU(3). 

The next step is to introduce eight gauge fields  

                                                            
 , A = 1, 2, 3, ..., 8,  

one field for each generator   . The covariant derivative    is defined as 

                                                   :=    ig   
 
     

  =    ig  , 

where 

                                                              :=  ·   =    
 
     

   

and    := (  
 ,   

 , ...,   
 ).  The gauge field    transforms according to (7.21), i.e. in the adjoint 

representation of SU(3). The derivative transformation in adjoint representation is significant 
for describing the internal dynamics of the theory. The field strength tensor     is 

(7.31)                                             :=    
       

    g  
   

 . 

As we shall see in Section 7.5, the SU(3) gauge theory models the theory of strong 
interactions. The coupling g is denoted then by g  whereas  describes a colour triplet, i.e.  is a 
three-quark wave function  

                           (t,  ) =   
 t    

 
 t    

  t     
 

          

with colour index. The SU(3) local symmetry is not broken and the eight spin-1 gauge fields   
 , 

called gluon fields, are massless. 

To summarise the examples above: 

 

 

 

 

 

7.3. The Brout-Englert-Higgs mechanism (287) 

As we have seen in Section 6.2, Yang and Mills tried to develop a non-Abelian gauge theory to 
make hadronic isospin into a local SU(2) symmetry. But this formalism turned out not to 
describe interactions between hadrons. Instead, the local SU(2) symmetry (called weak isospin) 

                                                             

286 This is merely a picturesque way of referring to the three basic states of this degree of freedom and has nothing to 
do with real colour  see Section 7.5.  

287 See [H9] for historical exposition of this subject and [A1] as a general reference for this section. 
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describes the weak interactions between the constituents of the hadrons, namely quarks  and 
leptons. Together with QED, it constitutes the electroweak theory  see Section 7.4. 

However, as we know from Chapter 2, the weak interactions are short-ranged, so that their 
mediating quanta    and    must be massive. At first sight, this seems to rule out the 
possibility of a gauge theory of weak interactions, since a gauge boson mass violates gauge 
invariance, as we pointed out for the gauge quanta    in Section 6.2. One could try, then, to settle 

for a theory involving massive bosons without it being a gauge theory. Unfortunately, such a 
theory would not be renormalisable ([A1]). Let us explain briefly what this means.  

When a theory is used to calculate the effects of fundamental forces at the quantum level, the 
obtained values are in certain cases infinite (288). Of course, if one uses a theory to calculate an 
observable quantity, and finds that the answer is infinite, one concludes either that a  
mathematical mistake has been made, or that the original theory was no good. For example, the 
electron’s ability constantly to emit and reabsorb ‘virtual’ photons means that its total energy 
and its mass are infinite (289). However, by redefining the mass of the ‘bare’ electron to include 
these virtual processes and setting it equal to the measured mass  that is, by renormalising  
the problem is removed. More generally, renormalisation is a procedure in quantum field theory 
by which divergent parts of a calculation, leading to nonsensical infinite results, are absorbed by 
redefinition into a few measurable quantities, so yielding finite answers. A relatively limited 
number of theories are renormalisable, with gauge theories representing a notable subset. (290) 

One strategy adopted to fix the mass problem of Yang-Mills bosons was to artificially endow 
the bosons with a mass greater than zero. Imposing a mass on the bosons, results in a finite 
range of the fields. If the mass is large enough, the range can be made as small as is wished. 
However, with this modification the local symmetry of the Yang-Mills theory would no longer be 
exact but approximate.  

It turned out that the modified Yang-Mills theory had the problem of infinities and the 
standard renormalisation procedure used in QED did not work (291). An important idea was 
introduced in 1963 by Feynman in order to mitigate this problem. It is the notion of a ghost 
particle. Such a particle is added to a theory in the course of calculation and then vanishes when 
the calculation is finished. The use of a ghost particle can be justified if it never appears in the 
final state. This can be ensured by making certain the total probability of producing a ghost 
particle is always zero. ([H8]) 

This line of research was pursued by Martin J.G. Veltman (the University of Utrecht) and 
John S. Bell (CERN) (292). However, Veltman managed to renormalise his theory up to Feynman 

                                                             

288 When quantising a classical field theory, such as electromagnetism, the trick is to break the field down into a sum 
of harmonic oscillators applying a Fourier-transform. These oscillators can then be quantised. However, when 
decomposing a field into elementary quanta, there are infinitely many possibilities, and each of these has a nonzero 
energy in its ‘ground state’  lowest energy state .  n infinite number of non ero things added together can yield 
infinity ([T5]).   
289 These divergences seemed unavoidable consequences of locality (point-like particles with contact interactions) 
and unitarity (conservation of probabilities). Indeed, one must sum over the contribution of virtual photons with 
arbitrarily high energies because there is no short-distance structure. And due to conservation of probabilities, all 
processes contribute additively. 
290 Renormalisation was first developed in quantum electrodynamics (QED) to make sense of infinite integrals in 
perturbation theory. It was initially viewed as a suspect provisional procedure.  
F. Dyson once asked Dirac: “Well  Professor Dirac  what do you think of these new developments in quantum 
electrodynamics?”  Dirac, the mathematical purist, was not enamoured: “I might have thought that the new ideas were 
correct if they had not been so ugly.”  ([F1]).  
Freeman John Dyson (1923 – 2020) was a British-American theoretical and mathematical physicist. 
291 QED is a well-behaved theory in which the infinities can be unambiguously removed by introducing two 
parameters that have to be determined experimentally: the mass and charge of electrons. ([H12])  Roughly speaking, 
a theory is renormalisable if it requires only a finite number of counter terms for canceling infinities.  
292 Martinus Justinus Godefriedus ‘Tini’  eltman   9   – 2021) was a Dutch theoretical physicist. He shared the 1999 
Nobel Prize in Physics with his former PhD student Gerardus 't Hooft. 
John Stewart Bell (1928 – 1990) was a physicist from Northern Ireland and the originator of Bell's theorem, an 
important theorem in quantum physics regarding hidden variable theories. 
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diagrams with one loop only. To render the ‘massive Yang-Mills theory’ renormalisable, a better 
theory was needed. ([H8]) 

In the meantime another new ingredient for the formulation of gauge theories was 
introduced. A way was found of giving gauge field quanta a mass  which is by ‘spontaneously 
breaking’ (293) the gauge symmetry. This means the symmetry exists at high energy and 
spontaneously breaks at lower energies. ([H8]) 

The solution is the so-called Brout-Englert-Higgs mechanism (294), or shortly BEH 
mechanism, that assigns a mass to the gauge bosons without breaking the gauge invariance.  
It requires the introduction of four new spin-0 fields, which are called Higgs fields (P. Higgs 
1964, R. Brout and F. Englert 1964, G. Guralnik, C. R. Hagen and T. Kibble 1964 (295)). 

Spontaneous symmetry breaking (SSB) process can describe systems where the Lagrangian 
density obeys symmetries, but the lowest-energy vacuum solutions do not exhibit that same 
symmetry. When the system goes to one of those vacuum states, the symmetry is broken even 
though the entire Lagrangian density retains that symmetry. It means that the Lagrangian 
density can have symmetries that no longer appear in the physically realized state.  

This process of spontaneous symmetry breaking was initially studied as a purely theoretical 
idea of endowing some of Yang-Mills fields with mass while retaining exact gauge symmetry. 
This idea did not gain much support or attention at that time. It is worth mentioning that the 
manuscript of the second paper of Higgs was firstly submitted to Physics Letters. After rejection 
by the editor, he resubmitted it to Physical Review Letters and got published due to the 
encouragement and support of Yoichiro Nambu (296) who was the referee of the paper. 

One problem with the idea of spontaneous symmetry breaking was an earlier theorem of J. 
Goldstone [G5] (297) who proved in 1961 that whenever a (global) continuous symmetry is 
spontaneously broken by the vacuum state of a model, there must exist a massless spin-0 
particle (called now Goldstone boson). Since there was no evidence for such particles, the 
spontaneous breaking of symmetries was considered to be unviable for a couple of years. (298) 

                                                             

293 The name is a bit misleading because the symmetry is not really broken. After all, the field equations and the 
Lagrangian are still invariant. 

294 This mechanism is simply called the Higgs mechanism. Actually it should be called Brout-Englert-Guralnik-Hagen-
Higgs-Kibble-Mechanism. There is an anecdote about naming of concepts in physics [W13]: “… In a course on particle 
physics I took at Harvard from  …   lvaro De Rujula  whenever he introduced a concept with someone’s name 
attached to it  he would generally say something like the following: ‘This is the so-called Weinberg angle, which of 
course was discovered not by Weinberg  but by Glashow’. On one occasion after introducing a named concept he 
stopped for a while and seemed to be thinking deeply. Finally he announced that, as far as he knew, strangely enough, 
this concept actually seemed to have been discovered by the person whose name was attached to it”.  

295 - Robert Brout (1928 – 2011) was a Belgian theoretical physicist. 
- François, Baron Englert (1932 –) is a Belgian theoretical physicist and 2013 Nobel Prize (shared with Peter Higgs) 
laureate.  
- Peter Ware Higgs (1929 – 2024) is a British theoretical physicist and 2013 Nobel Prize laureate. 
- Gerald  tanford ‘Gerry’ Guralnik   9 6 – 2014) was an American theoretical physicist. 
- Carl Richard Hagen (1937 –) is a professor of particle physics at the University of Rochester. 
- Sir Thomas Walter Bannerman Kibble (1932 – 2016) was a British theoretical physicist. 
While widely considered to have authored the most complete of the early papers on the Higgs theory, 
Guralnik+Hagen+Kibble were controversially not included in the 2013 Nobel Prize in Physics. 

296  Yoichiro Nambu (1921 – 2015) was a Japanese-American physicist and 2008 Nobel Prize (shared with Makoto 
Kobayashi and Toshihide Maskawa). 

297 Jeffrey Goldstone (1933 –) is a British theoretical physicist. 

298 In 1965 Higgs received an invitation from Freeman Dyson to present a seminar on the Higgs mechanism at the 
Institute for Advanced Study. When he delivered the seminar in March 1966, the audience was sceptical, with one 
Harvard theorist later admitting that they “had been looking forward to tearing apart this idiot who thought he could 
get around the Goldstone theorem.”  [B ] . 
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 In 1964 Higgs [H6] showed, however, that the theorem of J. Goldstone does not apply to 
gauge theories. 

We begin by explaining the BEH mechanism in the simplest setting known as the Abelian 
Higgs model. This is the U(1) gauge theory (see Section 7.2) with the spontaneous symmetry 
breaking phenomenon to render the U(1) gauge boson massive. The key idea of the BEH 
mechanism is to include in the theory an extra field, one having the peculiar property that it does 
not vanish in the vacuum. In physics, the vacuum is defined as the state in which all  
fields have their lowest possible energy. For most fields the energy is minimized when the value 
of the field is zero everywhere, The Higgs field has this unusual property that reducing it to zero 
costs energy – its energy is smallest when the field has some value greater than zero. ([H8]) 

Brout et al. essentially studied spontaneously breaking the U(1) gauge symmetry by 
including one complex scalar field   =    + i  , acquiring a non-zero vacuum expectation value 
(VEV). Let us look at this more closely (see e.g. [A1], [M1], [N1], [S11], [T1] for further details). 
To understand the effect of SSB on a theory with a local symmetry we consider a toy model of 
‘electrodynamics’ specified by the Lagrangian density 

(7.33)                                      =    
      

 

 
     

        , (299) 

where   is a complex scalar field,    is a vector gauge field,  

                                                                      =   + ig   (300),  

and the potential      is given by 

                                                                   :=               ,  

where       0. Notice that V is also a function of     , because     =     . The Lagrangian 
density (7.33) is invariant under U(1) gauge transformation (5.14). Since    and    are positive, 
the potential      has a minimum at   = 0. We call the   = 0 state the vacuum. In terms of a 

quantum field theory, where    is an operator, the precise statement is that the operator     has 
zero vacuum expectation value (VEV), i.e.        0    0  = 0 (see Section 5.9 for notation). 

Now suppose we reverse the sign of   , so that the potential becomes 

                                                                   =                .  

We see that this potential no longer has a minimum at   = 0, but a (local) maximum. The 
minimum occurs at  

 (7.34)                                                                 = 
  

  
 = 

 

  
, 

where   : 
 

  

  

 
. The potential   as a function of      (301):     

                                                             

299 Reminder:    
  =    

       
   see Example 7.7. 

300 We call the gauge coupling constant g rather than q (like in (5.8)) because we are using this theory as a formal 
example rather than a physical model. 

301 In 3D the Higgs potential V( ) has the rotationally symmetric shape of a ‘Mexican hat’  see below. 
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Thus the potential V( ) attains its minimum value at  

                                                                           =      , 

where   can take any value from 0 to  π and    is such that     
  = 

 

  
.                                              

Consequently, there is an infinite number of states each with the same lowest energy, i.e. we 
have a degenerate vacuum. And the system is completely symmetric: one can rotate the 
potential around the vertical axis (by taking different values of  ), and it will still look exactly the 
same. The symmetry breaking occurs in the choice made for the value of   which represents the 
true vacuum, i.e. the choice of a particular point the field ‘rolls down’ into. For convenience, one  
chooses     0 to be vacuum.  uch a choice constitutes a spontaneous breaking of the U(1) 
invariance since a U(1) transformation (5.14) takes us to a different point with the lowest 
energy state. In other words, the vacuum breaks U(1) invariance.  

When rolling down into a point of lower energy, the field   acquires a nonzero vacuum 
expectation value (VEV). Previously, when it was on the top of the hill, the field's value was zero.  

Now the field has a non-zero value, the VEV = 
 

  
, but it has lower energy than it had before. (302) 

Note that the VEV is the value of the field, not of the energy. The potential   as a function of  : 

                                (303) 

In order to understand the physical content of the theory we can write the complex field   in 

terms of its modulus     and a phase, and to expand     around VEV =     , 
                                                             

302 It is a very unique property of the field  , however. Most fields are in their lowest state of energy when they are 
free of excitations, that is, no particles are present. For instance, the lowest energy state of the electromagnetic field is 
when there is no radiation, i.e., there are no photons present. It is not the case for the   field. Its lowest energy state is 
when some excitations are present. So the ‘no excitations present’ state is unstable: it can ‘decay’ into a lower energy 
state. This is the process of symmetry breaking which creates a new type of vacuum with the vacuum expectation 
value (VEV) being nonzero. 

303 Spontaneous symmetry breaking: an object residing in a rotationally symmetric potential rolls down and finds a 
stable, asymmetric position. From https://cds.cern.ch/record/2012465/plots 

https://cds.cern.ch/record/2012465/plots
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                                                             =           = 
 

  
(  +        , 

where   is a real scalar field. Thus we have separated the field   into VEV, which is just a 
number, and a new real scalar field (t,  )   (t,  ). Substituting it into the Lagrangian (7.33), 
we find 

                                                   =  
 

 
     

    g   
    

 

 
 g      

   

                                                                             + 
 

 
   

          

                                                                               
 

 
  

   + (    interactions).  

This Lagrangian now describes a theory with a ‘photon’ of mass    = g , a Higgs (i.e. Brout-

Englert-Higgs) boson   with    =     =     , and a massless Goldstone boson  . However, 
the Goldstone boson can be removed by making the following gauge transformation:   

                                                                       
  =     

 

  
  . 

The gauge choice with the transformation above is called the unitary gauge. The Goldstone 
boson will then completely disappear from the theory and one says that the Goldstone has been 
‘eaten’ to give the photon mass. 

7.4. The Glashow-Salam-Weinberg electroweak theory (GSW)(304) 

The decay of nuclei proceeds via -,  -, -emission, or by fission. The first is governed by strong 
nuclear forces, the third by electromagnetic interactions. The  -emission has an entirely 
different origin. It is caused by weak interactions.  

The weak interaction is in a certain sense the most enigmatic. The two macroscopic 
interactions, gravitation and electromagnetism, are both familiar to us, at least in the classical 
version. The strong nuclear force is absolutely essential for the existence of matter as we know 
it. But what do we ‘need’ the weak interaction for? It is of extremely short range and at low 
energies by far the weakest of the three microscopic interactions. But actually also the weak 
interaction is vital for life on our planet. Without it the production of energy in the sun would 
not be possible because the weak interaction plays an essential role in nuclear fusion 
responsible for energy production. ([E1]) 

Initially,  -emission posed a serious puzzle: the observed emerging particles, electrons or 
positrons, did not come out with definite energy equal to the mass difference between initial and 
final nuclei. Instead, they had an energy distribution with a maximal energy at the expected 
value. This led Niels Bohr (305) to speculate that energy conservation could possibly be violated 
in quantum physics. This shows how desperate people were. The solution to the problem was 
devised by Wolfgang Pauli. In 1930 he suggested in a historic letter [P4] to colleagues  “Dear 
Radioactive Ladies and Gentlemen”  attending a meeting at Tübingen that the missing energy 
was carried off by a neutral particle, now called neutrino (306) (excerpt):  

                                                             

304 See [A1] and [H9] as a general reference for this and the next section. 

305 Niels Henrik David Bohr (1885 – 1962) was a Danish physicist who made foundational contributions to 
understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.  

306 Neutrinos feel only the weak interaction, which is what makes them so difficult to study. They are the only particles 
to experience just one of the fundamental forces. Pauli writes in his letter that he does not dare to publish his idea for 
the time being. Half a year later, at a meeting of the American Physical Society in Pasadena, California in July 1931, 
Pauli himself presented his neutrino hypothesis but he still prohibited any publication. Only his talk at the 7th Solvay 
Conference in Brussels in 1933 could finally be published. ([E1])  

https://en.wikipedia.org/wiki/Danes
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Atomic_structure
https://en.wikipedia.org/wiki/Old_quantum_theory
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
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(...) 

Weak interactions act on all particles (except photons and gluons), both leptons and quarks. 
Furthermore, the weak interaction is the only one that can change the flavour of the particles 
involved in the interaction (see Remark 2.2 in Chapter 2). Despite the ubiquity and importance 
of the weak interaction, though, weak processes are relatively rare. We observe them taking 
place in a system only if strong or electromagnetic processes are forbidden for some reason, e.g. 
by conservation laws.  

We know now there are three mediating spin-1 bosons for the weak interaction: the    and 
   carry an electric charge of 1 elementary charge and are each other's antiparticles. The     
boson is electrically neutral and is its own antiparticle. These bosons are among the 
heavyweights of the fundamental particles. With masses of 80.4 GeV and 91.2 GeV, respectively, 
the    and     bosons are almost 80 times as massive as the proton – heavier, even, than entire 
iron atoms. This is the reason why the weak interaction seems so feeble. The uncertainty 
principle tells us that in order for two particles to be close enough to exchange a virtual particle 
with a mass of the order of 100 GeV, and thus participate in a weak interaction event, they have 
to be very close together  about  0    metres apart, or roughly a hundredth the radius of a 
proton. The intrinsic strength of the weak interaction is not small at all. In fact, the weak 
coupling constant is 1/29  almost five times larger than the (electromagnetic) fine-structure 
constant   1/137 (307). 

The emission or absorption of a    boson can change the electric charge and flavour (but 
not colour) of the particle – for example changing a strange quark into an up quark. The 
emission or absorption of a    boson can only change the spin, momentum, and energy of the 
other particle. 

Looking for a model of the weak interactions based on a version of the Yang-Mills theory the 
question is this: what is the relevant symmetry group of local phase transformations, i.e. the 
relevant weak gauge group? Several possibilities were suggested, but it is now very well 
established that the one originally proposed by Glashow (1961), subsequently treated as a 
spontaneously broken gauge symmetry by Weinberg (1967) and by Salam (1968) (308), and 

                                                             

307 This name comes from the fact that it was first measured in the splitting of atomic spectral lines called ‘fine 
structure’. 

308 Sheldon Lee Glashow (1932  ) is an American theoretical physicist and 1979 Nobel Prize (shared with Weinberg 
and Salam) laureate. 
Steven Weinberg (1933  2021) is an American theoretical physicist and 1979 Nobel Prize laureate. 
Mohammad Abdus Salam (1926 – 1996)  was a Pakistani theoretical physicist and 1979 Nobel Prize laureate. 
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later extended by other authors, produces a theory which is in remarkable agreement with 
currently known data.  

The simplest possibility is to suppose that the relevant symmetry group is ‘weak       
group’ called weak isospin. Let us emphasize that this weak isospin is completely different from 
the isospin of Section 6.1. The only agreement between these two notions is that they are 
described by the same mathematics of the SU(2) symmetry group. But now, our doublet is not 
(n, p) but rather lepton doublets, e.g. (  , e )  the electron  e  and its neutrino   , or quark 
doublets, e.g. (u, d). The other lepton doublets are (  , ) and (  , ), whereas quark doublets 

are (c, s) and (t, b)  see Chapter 2. 

Taking the SU(2) symmetry group looked like a good model for weak interactions, but 
physicists encountered its first big flaw. It was observed in the 1950s by C.S. Wu and 
collaborators (at the suggestion of Lee and Yang) that the weak interactions did not conserve 
parity (309). That is to say, the Lagrangian is not invariant under the spatial inversion     . 
Particle physicists observed only left-chiral fermions and right-chiral antifermions (310) 
engaging in the charged weak interaction. Interactions involving right-chiral fermions have not 
been shown to occur, implying that the universe has a preference for left-chirality. This is a 
striking observation, since parity is a symmetry that holds for all other fundamental interactions 
([W11]). 

We shall examine the concept of parity in more detail. The parity operation is defined as 
spatial inversion around the origin: 

                                                      (t,  )  (t,   ) = (t,  x,  y,  z). 

In other equivalent terms, the parity operation is carried out by taking the mirror image of an 
object and then rotating it by 180° around the axis perpendicular to the mirror. This operation 
represents a symmetry in space. It may be anticipated that the laws of nature would remain 
unaltered under this operation, given that a preferred direction in space does not exist.  

The parity operator    transforms a wave function (t,  )  (t,  ) to  

                                                         (t,  ) =   (t,  ) := (t,   ). 

The operator    is both unitary and Hermitian, and thus corresponds to an observable quantity. If  
 is an eigenfunction of the parity operator with eigenvalue   then      . The parity of a 
fermion is opposite that of the antifermion, whereas the parity of a boson is the same as its 
antiboson. It is customary to assign positive or even parity +1 to particles and negative  or odd 
parity  1 to antifermions (if they are fermions). The parity of a combined system is the product 
of the parity of its constituent parts. ([B6], [M7]) 

An explicit form for the parity operator, suitable for use on Dirac spinors, is ([L1]) 

                                                                   :=  
 

 =  
0 I 
I 0 

 . 

It turns a left-chiral spinor into a right-chiral spinor and vice versa:    
 

  
 

 and   
 

  
 

. 

                                                             

309 Since 1925, physicists had assumed that our world is indistinguishable from its mirror image – a notion known as 
parity conservation. In June of 1956 theoretical physicists Tsung Dao Lee and C.N. Yang studied the so-called  -τ 
meson puzzle and submitted a short paper to the Physical Review raising the question of whether parity is conserved 
in weak interactions. They proposed a number of experimental tests for parity conservation in the weak interaction, 
and in the same year such an experiment was carried out by C.S. Wu which confirmed parity violation in the weak 
interaction. Yang and Lee were awarded the Nobel Prize in Physics in 1957. The success of the experiment came as a 
great surprise to Pauli and Feynman. They had been willing to bet money that the experiment would find that parity is 
preserved. Pauli: “After all, God is not a weak left-hander”  [E ] . Feynman considered parity violation "unlikely, but 
possible, and a very exciting possibility," but later made a 50 $ bet with a friend that parity would not be violated.  
Although Feynman had lost the bet, he was among the first to draw the right conclusions. Feynman and Gell-Mann 
modified the original Fermi theory of weak interactions to account for parity violation (V-A theory, 1958). ([E1]) 

310 See Section 5.7 for explanation of ‘chirality’. 
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The term 'parity violation' is used to describe the phenomenon whereby the weak force 
treats a quantum and its parity reverse (its other chirality in the case of fermions) differently. 
This violation of parity has been observed on numerous occasions. The first measurement that 
demonstrated such a violation of parity was conducted in 1956 by Chien-Shiung Wu in 
collaboration with the Low Temperature Group of the US National Bureau of Standards. 

C.S. Wu devised and conducted an experiment to test the possibility of parity violation in  -
decay. She set up a system of Cobalt-60 atoms, which all decayed to Nickel-60. She aligned them in 
a magnetic field, so that all their spin vectors were lined up, and then let them to decay, 
measuring the direction of the outgoing electron. If parity were conserved, she would expect to 
see electrons emitted isotropically. For what reason? The parity operator has no effect on the 
spin state of a cobalt atom. This implies that the spin state is the same in both the original world 
and the parity-transformed mirror world. Let us consider the scenario in which an electron is 
emitted in the direction of the spin vector in this world. In the mirror world, the electron will be 
moving in the opposite direction to that of the spin. The principle of parity conservation implies 
that the probability of one interaction occurring in this world is the same as the probability of its 
mirror image. Consequently, we should observe the same number of events in which the 
electron is emitted anti-parallel to the spin vector as in which it is emitted parallel to the spin 
vector. ([B6]) 

However, Wu observed that electrons were emitted with a preferential directionality aligned 
with the spin vector, a phenomenon that clearly violated the conservation of parity. 
Furthermore, the emission was not insignificant, with the vast majority of electrons being 
emitted in a single direction. It appeared that the violation was at its most extreme. The long-
held belief that parity was a fundamental symmetry of nature was challenged in 1956, leading to 
significant distress among many respected physicists. ([B6]). 

The question thus arises as to how parity violation can be incorporated into the model of 
weak interactions. The requirement of Lorentz invariance imposes significant constraints on the 
form of the interaction vertex (311). Both quantum electrodynamics (QED) and quantum 
chromodynamics (QCD) conserve parity and are vector interactions. Consequently, the vertex 
can be expressed as j  =    . Given that parity is violated in the weak interaction, it can be 

concluded that the weak interaction vertex cannot be expressed in this form. The form of the 
weak interaction is determined by experiment to be vector – axial-vector (V–A) interaction (312). 
The charged weak current vertex involves a chirality projection and is written as  

                                                                     
   

 

  
 

 

 

 
   

    

where g is the weak coupling constant. The name ‘charged current’ comes from the currents of 
fermions coupled to the    bosons, which have an electric charge. ([B6]) 

The incorporation of the left-chiral projection operator in the current implies that the 
charged weak interaction only couples left-chiral fermions, or right-chiral antifermions ([B6]) 

                                                  
 

 

 
   

      
     

 
       

 
 

    
 

 

. 

At extremely high energies, the chiral components correspond to helicity eigenstates (see 
Section 5.8) (313). This has implications for neutrinos. It is established that all neutrinos are 
observed to possess left-handed (i.e. negative) helicity, whereas anti-neutrinos exhibit right-
handed (i.e. positive) helicity. Given that neutrinos, even if they do possess mass, are ultra-
relativistic, this implies that all neutrinos have left-chirality, whereas antineutrinos have right-

                                                             

311 A point in a Feynman diagram where lines connect to other lines is a vertex, and this is where the particles meet 
and interact: by emitting or absorbing new particles, deflecting one another, or changing type ([W11]). 

312 An axial vector (also known as a pseudovector) is a vector quantity that remains unchanged when transformed 
according to a parity transformation.  

313 Recall that the concept of chirality does not apply to bosons. With regard to helicity, it has been established that in 
the rest frame of the collision, the    and Z⁰ bosons are produced in all three helicity states, with left-handed helicity 
being the predominant outcome ([C4], [Q1]). 
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chirality. As neutrinos can only be produced through weak interactions, they are all created as 
left-chiral particles. ([B6]) 

It is important to note that neutrinos do not inherently possess intrinsic left-handed helicity. 
The left-handed helicity of neutrinos is a consequence of their creation in weak interactions and 
the fact that, due to the negligible mass of neutrinos, helicity and chirality are essentially 
synonymous in this case. This does not preclude the possibility of the existence of a neutrino 
with right-handed helicity. Nevertheless, it can be demonstrated that the probability of 
generating such a neutrino is extremely low. However, if a right-handed helicity neutrino exists, 
it does not couple to any of our fundamental forces (with the possible exception of gravity) and 
therefore may be very difficult to detect. Despite this, due to the phenomenon of neutrino 
oscillations, a right-handed helicity neutrino state could still have indirect but visible effects in 
some neutrino oscillation experiments. ([B6]) 

In the case of electrons (and quarks), however, both left- and right-chiral states have been 
observed, yet only the former couple to the charged weak interaction, i.e. to the    bosons (314). 
In contrast, the    boson is capable of coupling also to right-chiral particles. Given that neutrinos 
are created solely by the charged weak current, this has no impact on the properties of the 
neutrino. ([B6]) 

In conclusion, the weak force acts on all quarks and leptons. It is propagated by three 
massive bosons:   ,    and   . Interactions of charged bosons (known as ‘charged weak 
current interactions’) change the flavour of a (left-chiral) fermion, whereas Z⁰-boson 
interactions  termed ‘neutral weak current interactions’) maintain the flavour of the fermion. 

Let us now resume our discussion of the GSW theory of weak interactions. 

Since the weak charged bosons couple only to left-chiral fermions (or their right-chiral 
antiparticles), the weak isospin group is referred to as       , to show that the weak isospin 
assignments and corresponding transformation properties apply only to these left-chiral parts.  

Weak isospin is a quantum number related to the weak interaction. It is usually given the 
symbol   with the third component written as    (this is analogous to the spin component    in 
Example 5.3). Left-chiral fermions and right-chiral antifermions have a total spin of   =     and 

can be grouped into doublets with    =   
  , which exhibit identical behaviour under the weak 

interaction. By convention, electrically charged fermions are assigned    with the same sign as 
their electric charge. Right-chiral fermions and left-chiral antifermions possess zero weak 
isospin   = 0, rendering them incapable of interacting with the    bosons (with the exception 
of electrical interaction). Consequently, for example, the right-chiral electron undergoes a trivial 
transformation (it remains unchanged) under SU(2), while the left-chiral electron transforms 
into the neutrino and vice versa. 

For a fermion field  let 
 

 denote its left-chiral component (it is a Weyl spinor – see Section 

5.8). An        transformation (6.8) acts now on left–chiral parts of doublets, e.g.  

(7.35)                           
  

   
 

   
  

   
 

 
=   

 

 
      

  

   
 

. 

Making (7.35) into a local phase invariance (following the logic of Section 6.2) will entail the 
introduction of three gauge vector fields   = (  

 ,   
 ,   

 ), transforming under the group 

      . The covariant derivative is then given by (see Example 7.8) 

                                                  = I    ig
 

 
 ·    = I     ig
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                                                    =  
 0
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   ig

 

 
 

  
   

      
 

  
     

    
   

                                                             

314 A massive fermion, which oscillates between left- and right-chiral states, may only emit a    particle (for instance, 
an electron turning into a neutrino) when it is in its left-chiral state. 
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                                                    =  
 0
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   ig
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where we have defined a complex gauge field   
  := 

 

  
(  

      
 ) (315). The   superscript on 

  
  is just the electric charge (which is conserved) carried by the gauge boson. The charged 

quanta of these fields will, of course, be related to the now familiar physical    bosons 
mediating the charged current transitions. The neutral member   

  corresponds to    that 

mediates neutral current weak interactions ([M6]). (316) 

However, the attempt to treat the weak interactions as a gauge theory with the symmetry 
group SU(2) initially failed. By (7.35) local SU(2) transformations act on doublets that are two 
component objects. Such a doublet  contains two spin-½ fields, for example, the electron and 
the electron neutrino field that are ‘rotated’ by SU(2) transformations into each other. A locally 
SU(2) invariant total Lagrangian density is  see Eq. (6.19) and Example 7.8 

                                             
  =  (

   )   
 

 
    

     ig   ·   , 

We know that local       symmetry can only be achieved without ‘mass terms’ of the form 
    

 . Moreover, the Lagrangian density       
  would have to be invariant with some 

arbitrary 22 mass matrix M (see Example 7.8), because  is now a two-component object. 
Taking only one mass value   means that masses for the two spin-½ fields must be equal. But 
from experiments we know that this is not the case: the electron mass is much bigger than the 
electron-neutrino mass. This is commonly interpreted as the SU(2) symmetry being broken. As 
we shall see below, the BEH mechanism enables us to get a locally SU(2) invariant Lagrangian 
density that includes mass terms. 

It turned out that the electromagnetic and the weak interactions cannot be treated by 
separate gauge theories. A key contribution was made by Glashow (1961); similar ideas were 
also advanced by Salam and Ward (1964). Glashow suggested enlarging the        schemes by 
inclusion of an additional       gauge group, resulting in an       ×      group structure 
(317). The Abelian       group is associated with a weak analogue of hypercharge  weak 
hypercharge    just as        is associated with weak isospin (see Example 7.7). The 
mathematics of electric charge q and weak hypercharge   is the same, but the physical meaning 
is slightly different. 

Electroweak symmetry breaking in the early universe had an impact on the U(1) symmetry. 
So before symmetry breaking, the charge was different. This charge is weak hypercharge  . 
Another consequence is that the gauge field was not exactly the same as the electromagnetic 
field as we know it in our current universe. Therefore, the excitations of this field are not called 
photons. They are called   bosons ([S0]). 

Naively one could think of U(1) as the group        for electromagnetism and at a SU(2) for 
weak (charged and neutral) interactions, but this does not work, because weak charged currents 
couple only to left-chiral components, while electromagnetic interaction acts on both left- and 
right-chiral components with the same strength. This means that the gauge boson of the U(1) 
group cannot be the photon. For this reason the   boson of a gauge field    was introduced that 

couples to fermions according to the weak hypercharge  . The field    is analogous to the 

photon field    in the        gauge theory (see Example 7.7).  The weak hypercharge of the 

                                                             

315    is included for convenience. 

316 The physical boson    is related to a mixture of   
  and    gauge fields – see below. 

317 In group theory, the (direct) product is an operation that takes two groups G and H and constructs a new group, 
usually denoted G × H. That is  G × H is the set of all ordered pairs  g  h   where g ∈ G and h ∈ H  and the group 
multiplication is defined component-wise:  (g , h ) · (g , h ) = (g g , h h ). 
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left-chiral electron and the neutrino is   =  1 (318). The right-chiral electron has a weak 
hypercharge   =  2. However, we cannot measure the weak hypercharge since we cannot 
create the circumstances from before symmetry breaking in our detectors. So we have to rely on 
theory ([S0]). 

Consequently, in the terminology of Section 7.2, Glashow studied chiral G-gauge theory with 
the group G =       ×     . Because there are two separate groups there are two different 
coupling constants g and g  (see (7.39) below) corresponding to the two different interactions  
so there is no complete unification in terms of coupling strengths. The first underlying problem 
with Glashow’s idea is, of course, that if this G symmetry holds exactly, it demands that all the 
bosons have zero mass. This does not reflect the world as we see it. The second problem was 
more subtle. No weak interaction had been observed that would require the exchange of a new 
neutral particle   . For these reasons, Glashow's proposal drifted into the background. Yet 
several of the key theoretical ingredients needed to complete a revolution in fundamental 
physics were in place, but it was far from obvious at the time. 

It was Weinberg (1967) and Salam (1968) who made the correct application of the BEH 
mechanism of spontaneous symmetry breaking of       ×      in order to generate mass for 
the gauge quanta associated with the weak force.  

Let us briefly sketch that idea. Analogously to the U(1) toy model in Section 7.3, the 
electroweak       ×      symmetry is spontaneously broken by introducing an additional 
field   with an appropriate potential. In order to obtain three massive and one massless 
electroweak gauge bosons, the latter one being the photon,       ×      must be broken to the 
electromagnetic group       . Therefore, a Higgs mechanism must operate in such a way that 
after symmetry breaking one massless gauge boson (the photon) remains, and three others 
acquire a mass. 

The local       ×      symmetry requires three        gauge fields (Example 7.8), which 
we call   

  (i = 1, 2, 3), and one       gauge field    (Example 7.7). Now, the easiest way to 

obtain at least three scalar degrees of freedom is to introduce a complex scalar SU(2) field 
having four (real) degrees of freedom 

(7.36)                                                      =   
  

    =  
       

      
 . 

The field    has two neutral and two electrically charged components that form a complex 
doublet of the weak isospin SU(2) symmetry (319). One degree of freedom is Higgs mode   
acquiring a non-zero VEV, the remaining three are massless Goldstone bosons    with zero VEV. 
Choosing which one of the four degrees of freedom in the doublet (7.36) to be the Higgs mode is 
arbitrary. In addition, we need a scalar potential with the property that its ground state no 
longer preserves the symmetries of the theory. This will generate mass terms for both the weak 
gauge bosons and the (fundamental charged) fermions starting from a Lagrangian that 
preserves the symmetries of the theory. 

Thus one must now decide how to choose the non-zero vacuum expectation value that 
breaks the       ×      symmetry. The essential point is that, after symmetry breaking, we 
should be left with three massive gauge bosons (which will be the    and   ) and one massless 
gauge boson, the photon  (320). We may reasonably guess that the massless boson will be 

                                                             

318  The weak hypercharge   is related to the electric charge   (in elementary charge units) and the third component 

of weak isospin     by the Gell-Mann-Nishijima formula   =    + 
 

 
 . Thus for the left-chiral e  (and neutrino) we 

have Y = 2(     ) = 2(     
 

 
    = 1. 

319 This complex doublet model is just the simplest one. There are alternatives in which more than one Higgs boson 
exists, which means that there would be heavier Higgs-bosons that are yet to be found. ([T5]) 

320 The rules of quantum mechanics allow the   
  and    bosons to mix to form   ,    and . The amount of mixing is 

determined by a number    called the weak mixing angle  see below. 
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associated with a symmetry that is unbroken by the vacuum expectation value. However, we 
want to generate mass for    and   . The choice suggested by Weinberg (1967) was 

                                                                0    0  =   
0
 

  
 , 

where   is defined as in Eq. (7.34). The parameter   = 246 GeV defines the electroweak scale, 
also known as the Fermi scale. The fluctuation around the minimum   is can be written as  

                                                                  t    =     
 

  
  t   .  

Thus    

(7.37)                                                           =  
0

 

  
          

Where  t       t    is the physical (real scalar) Higgs field (321). Its SU(2)-invariant 
Lagrangian density, consisting of a kinetic and a potential term, is 

(7.38)                              =    
     +                     (      0). 

The Lagrangian density for the sector containing the gauge fields and the Higgs fields is 

                                 =        +       
 +       

  =         
 

 
    

    
 

 
     

  , 

where  

                                                            :=    
       

    g  
   

    

is the SU(2) field strength tensor and     is the       field strength tensor  see Examples 7.6 

and 7.5, respectively. The covariant derivative    is given by 

(7.39)                                               =    ig        ig     , 

where g  is the coupling constant of the    field (see Example 7.7). The Lagrangian density for 

the electroweak interactions before electroweak symmetry breaking is 

(7.40)                                     =        +       
 +       

  +    +        , 

where    is the kinetic term for the Standard Model fermions and         describes the Yukawa 

interaction with the fermions. 

When the expansion (7.37) is inserted into the Lagrangian density (7.40), the original 
      ×      symmetry is not apparent anymore and is said to be spontaneously broken (322). 
However, a        symmetry remains, ensured by a vacuum expectation value in the neutral 
component of the scalar doublet (7.36) and not in the charged one. Therefore, the photon as 
unbroken U(1) generator remains massless. In contrast, the weak gauge bosons acquire masses 
from the kinetic term of (7.38). The vacuum expectation value generates quadratic terms for the 
   and the    which are interpreted as mass terms   

   
       and   

      
 

, i.e. those 

gauge bosons acquire masses:    =   cos    =  
 
g , where    is the weak mixing angle (323). 

                                                             

321 The Higgs field is not charged under electromagnetism (it can not be, since it is real). 

322 One often reads that the term 'spontaneous symmetry breaking' SSB is misleading; the right term should be 
'hidden symmetries', which refers to systems in which some symmetries of the law are not visible, i.e. hidden from the 
lowest energy solutions of the law equations. This seems to suggest that no symmetry is broken in such systems - 
rather different symmetries apply to different aspects of them. For a detailed discussion of this issue the reader is 
referred to [I3]. 

323 The angle can be expressed in terms of the        and       coupling constants: cos    = g  g   g   . Because 
the value of the mixing angle is currently determined empirically, in the absence of any superseding theoretical 
derivation it is mathematically defined as cos    =       ([W11]). In contrast to the charged current weak 
interaction   , the    boson couples to left-handed (LH) and right-handed (RH) chiral components, albeit with 
differing strengths. 
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Thus after symmetry breaking, charged leptons and quarks that interacted with the Higgs 
doublet field now interact with this new vacuum itself, through the nonzero Higgs VEV  246 
GeV. (324) This shows up as an effective mass for these particles, because interactions mean 
energy which plays the role of rest mass in the equations. 

One says that three of the four real degrees of freedom of the Higgs complex doublet (7.36)  
the Goldstone bosons  are ‘eaten’ by the three vector bosons    and   , which acquire mass 
this way. Only one degree of freedom remains. It is this one degree of freedom that corresponds 
to a very heavy fundamental particle: the Higgs boson   that we observe. (325) Note that the VEV 
of the Higgs doublet field   is not to be confused with the Higgs boson. 

It is a subtle concept, so it is worthwhile to reiterate it. In the very early universe, before 
electroweak symmetry breaking, charged fermions (i.e. electrons and quarks) were massless. 
There was no electromagnetism yet. Moreover, there were four vector bosons: two massless 
photons and two massless photon-like particles that carried electric charge. And there was also a 
complex doublet field, the Higgs field, with some rather weird properties. But as the universe 
expanded and cooled, the vacuum underwent a phase transition to a lower energy state (326). It 
meant creating a ‘sea’ of Higgs doublet excitations that became combined with quarks, electrons, 
and three out of the four vector bosons. So these particles started to interact with the new, lower 
energy vacuum state in ways they had not done before. This altered their behaviour: with 
respect to this new vacuum, they now behave as though they were massive particles. Meanwhile, 
these interactions also altered the Higgs field itself. Two complex fields mean four degrees of 
freedom, but three of these ended up being tied to the three now massive vector bosons. The 
remaining degree of freedom is what we know today as the Higgs boson. It is a very massive 
particle with a very short lifetime, produced in the largest particle accelerator only to decay 
right away, playing no role of any significance in everyday physics ([T5]). 

In technical terms, before the phase transition the electroweak theory has an       ×      
symmetry with four massless gauge bosons   

 ,   
 ,   

  and   . When these bosons interact 

with the Higgs doublet field, a field that fills the Universe, the symmetry breaks. The Higgs 
potential gives mass to   

  and   
 . Consequently, there are two ‘new’ massive charged bosons 

  and   , which can be identified as a linear combination of the   
  and   

  components of 

the    fields:  

                                                          
  =        

   i  
  .  

                                                             

324 After rolling down into a point of lower energy, the field   acquires a nonzero positive vacuum expectation value. 
Physicists discuss the question whether it is the lowest possible energy state of the Higgs. The unpleasant answer is 
that there might be an even lower energy state (possibly, a state that is not bounded from below at all). This is due to 
quantum corrections suggesting that in the potential      =               

 the term         is replaced by 
something proportional to (      )      log( / ), where   is an energy scale (the renormalisation scale) and   is 
some constant. If     , this term is positive when    , but becomes negative (and unbounded from below) for 
   . This means that there is a potential barrier beyond it the initially positive energy can ‘cascade down’ through 
the negative energy levels, without limit. And no matter how large that potential barrier is, given enough time the 
probability that it will be breached, if nothing else, by quantum tunneling, will approach unity. 
Is this really in our future? Or is there a new lowest energy limit due to some high energy quantum behavior of which 
we are completely ignorant? Or perhaps this lower energy state does not exist at all? We do not know. But in its 
simplest form, the Standard Model seems to predict that such a collapse will eventually happen. ([T5]) 

325 The Goldstone bosons effectively become the longitudinal parts of the    and    fields, while the quantised 
excitations of the fourth Higgs field away from its vacuum value appear physically as neutral spin-0 particles, called 
Higgs bosons. Note that massless particles (like photon) do not have longitudinal polarization state whereas all 
massive ones have. Thus when    and    acquire mass they must also acquire longitudinal polarization (i.e. 
polarization in the direction of wave propagation).  The BEH mechanism precisely furnishes the missing degree of 
freedom (also called would-be-Goldstone bosons  in the literature) to make massive bosons out of massless ones 
([E1]). For massless vector particles, gauge invariance eliminates one degree of freedom, leaving only two transverse 
polarization states. 

326  Electroweak symmetry breaking took place when the Universe was already at the respectable age of about a 
trillionth of a second counting from the presumed initial singularity ([T5]). 
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The size of the mass of   and    depends on the coupling strength g which is the same for 
both particles. Things are different for   

  and   , because they interact with Higgs only in a 

mixed state. Since there are two possible mixes, one massless and one massive, we get the 
photon (massless) and the third weak boson    (massive). The    and photon field are:  

                                                    
      sin       

 cos    ,     

                                                           cos       
 sin    . 

The weak mixing angle    has an experimentally determined value of sin     0.23 (327). 

So we see that the old   
 -boson gets mixed with the old   -boson. New particles emerge 

from this mix ([S0]). As a result, there are three ‘new’ massive bosons: (  ,    and   ); the 
fourth boson  (photon) is massless  and there is a massive scalar (i.e. spin-0) Higgs boson   
left over.  

The charged (fundamental) fermions also get mass from a new type of interactions (Yukawa 
interactions) with the Higgs field. The actual observed mass of these fermions arises as a result 
of the Yukawa coupling constant that couples the fermions to the Higgs field (328). The values of 
these coupling constants are different for different fermions and span several orders of 
magnitude. However, not all mass is due to interaction with the Higgs VEV. Neutrinos, as far as 
we know, get their masses in a way not related to the Higgs at all. In addition, it has been 
estimated that only approximately 1% of the mass of hadrons is attributable to interaction with 
the Higgs field. The bulk of their mass is due to the energy associated with strong interactions 
between quarks and gluons (for further details, please refer to Section 7.5).  

In  97  Gerardus ’t Hooft  329) showed [H8] that the electroweak theory was renormalisable.  
Weinberg and Salam had conjectured this, but there was no proof initially. (330) 

The    boson adds new interactions, ones with neutral currents. The existence of weak 
neutral currents is a dramatic prediction of the GSW model. The discovery of such interactions 
was made in 1973 by A. Lagarrigue, P. Musset, D. H. Perkins, A. Rousset and co-workers using the 
Gargamelle bubble chamber at CERN near Geneva, Switzerland.  

And finally, in 2012 a subatomic particle with expected properties of a Higgs boson was 
discovered by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN.  

The electroweak theory was here to stay. 

                                                             

327 The value of     varies as a function of the momentum transfer  ∆q  at which it is measured. 

328 Normally fields only interact via exchange of energy quanta, but the Higgs is different. Field interactions also need 
to have a non- ero ‘coupling constant’, a number that indicates how strong their connection is: this is also true of the 
Higgs couplings to fermions, which are named Yukawa couplings. Now it turns out that since the Higgs field is 
spinless, its mathematical representation in this Yukawa interaction is just a number. And the combination of the 
Yukawa coupling and the Higgs VEV looks (mathematically) exactly like a mass term would. So the constant 
interactions of a massless fermion with the Higgs VEV make it behave exactly as if it has a mass. 
Note that Higgs bosons do not permeate the Universe. The Higgs field does. Higgs bosons are excitations (higher-
energy states) of the (scalar) Higgs field; they tend to exist very rarely and very briefly, before decaying to other 
things. It means that particles do not interact with the Higgs field by exchanging Higgs bosons. Rather, particles 
acquire mass through their interaction with the Higgs VEV, a value that is nonzero even when there are no actual 
Higgs bosons around. ([T5]) 

329 Gerardus (Gerard) 't Hooft  (1946  ) is a Dutch theoretical physicist. He shared the 1999 Nobel Prize in Physics 
with his thesis advisor Veltman. 

330 It was a major breakthrough. “…the psychological effect of a complete proof of renormalisabiity has been 
immense ” wrote  eltman some years later. In fact  what ’t Hooft had done was demonstrate that Yang–Mills gauge 
theories in general are renormalisable. Local gauge theories are actually the only class of field theories that can be 
renormalised. ’t Hooft was just  5 years old. Initially  Glashow didn’t understand the proof. Of ’t Hooft he said: “Either 
this guy’s a total idiot or he’s the biggest genius to hit physics in years.” Weinberg did not believe it  but when he saw 
that a fellow theorist was taking it seriously he decided to look more closely at ’t Hooft’s work. He was quickly 
convinced. ([B1]). 
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7.5. The strong interaction  QCD  

A gauge theory of the strong interaction could not be developed until a fundamental fact about 
the hadrons (i.e. strongly interacting particles, e.g. protons and neutrons) was understood: they 
are not fundamental particles. Evidence for the composite nature of hadrons accumulated during 
the 1960s and 1970s. 

Before this discovery, Murray Gell-Mann (331) and independently Juval Ne'eman (332) 
proposed in 1961 a phenomenological model for the classification of the hadrons, which Gell-
Mann initially named ‘Eightfold Way’ according to the Noble Eightfold Path in Buddhism, since 
the number 8 plays a central role in the model (333). 

Then in 1964, Gell-Mann and independently George Zweig (334) proposed a model of hadrons 
as composite objects. Though based on somewhat different (and much more fragmentary) 
evidence, their suggestion has turned out to be essentially correct. They proposed that baryons 
contain three spin-½ constituents called quarks, while mesons are quark-antiquark systems.  

Quarks (335) have different flavours (e.g. up and down) and only carry fractions of an electrical 
charge, but they always combine in such a way that hadrons have an integer net electrical charge 
 see Chapter 2.  

Any theory of the strong interactions has to explain the peculiar rules of building hadrons 
out of quarks. The structure of a meson is not too difficult to explain. Since it consists of a quark 
and antiquark, it is enough to assume that the quarks carry some ‘charge’ analogous to electric 
charge and that opposite charges attract. The structure of baryons, however, is more mysterious. 
To explain how three quarks form a composite object one must assume that three like charges 
attract ([H9]). 

The analogue of electric charge is a new quantum number called colour  (336). The rules for 
forming hadrons can be expressed by requiring all allowed combinations of quarks to be ‘white’ 

                                                             

331 Murray Gell-Mann (1929 –2019) was an American physicist who received the 1969 Nobel Prize in Physics. 

332 Yuval Ne'eman (1925 – 2006) was an Israeli theoretical physicist, military scientist, and politician. He had 
commanded an infantry battalion in the 1948 Arab–Israeli war and served as acting head of the Israeli Secret Service. 
He had achieved the rank of Colonel in the Israeli Defence Force when he decided to seek an opportunity to study for a 
doctorate in physics. Moshe Dayan, defence chief of staff, agreed to appoint him as a defence attaché at the Israeli 
Embassy in London. Dayan figured that Ne’eman could study for his PhD in his spare time. ([B1]) 

333 In December of 1960, after a chance conversation with a Caltech mathematician, Gell-Mann saw how to make the 
particles fit together beautifully in groups of eight. The Israeli physicist Yuval Ne'eman came up with the same idea at 
the same time, calling it by its mathematical name, SU(3). Gell-Mann, as usual, picked the name that endured: because 
he had been reading about Buddhism, he decided to call his classification scheme the Eightfold Way, a mocking 
reference to the Buddha's eight-step plan for righteous living ([J2]). 

334 George Zweig (1937  ) is an American physicist. He was trained as a particle physicist under Richard Feynman. 
Zweig was working as a postdoctoral associate at CERN, and published his model (which he called ‘ace model’) as a 
CERN preprint in January 1964. Having subsequently seen Gell-Mann’s paper  he moved quickly to elaborate the 
model, produced a second, 80-page CERN preprint, and submitted this to the prestigious journal Physical Review. He 
was shouted down by his peer reviewers. The paper was never published. When shortly afterwards he sought an 
appointment at a leading university, one of the faculty members, a respected senior theorist, declared the ace model to 
be the work of a charlatan. ([B1]) 

335 The word ‘quark’ was coined by Gell-Mann in  96  taken from „Finnegans Wake“ by James Joyce: 

Three quarks for Muster Mark! 
Sure he has not got much of a bark 
 nd sure any he has it’s all beside the mark. 

Gell-Mann [G ]: “When I assigned the name ‘quark’ to the fundamental constituents of the nucleon I had the sound 
first  without the spelling  which could have been ‘kwork.’ Then  in one of my occasional perusals of Finnegans Wake, 
by James Joyce  I came across the word ‘quark’  … . I had to find an excuse to pronounce it as ‘kwork’  …  I argued  
therefore  that perhaps one of the multiple sources of the cry ‘Three quarks for Muster Mark’ might be ‘Three quarts 
for Muster Mark ’ in which case the pronunciation ‘kwork’ would not be totally unjustified.” 
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or colourless. The quarks are assigned the primary colours red (r), green (g) and blue (b). The 
antiquarks have complementary anti-colours cyan (r ), magenta (g ) and yellow (b ). For example, 
the proton consists of the following combination: (uud).  

Each of the quark flavours comes in all three colours so that the introduction of the colour 
triples the number of distinct quarks. Colours are charges of the strong interaction, i.e. the 
strong force acts on the colour charge. It does not differentiate between quark flavours  it is 
flavour blind. The electromagnetic and weak interactions, on the other hand, are colour blind. 

The quark model is complicated by the fact that quarks have eight colour charges, which are 
non-commutative. Consequently, the effects of these charges do not add in a simple way. 

The theory of strong interactions is modelled on quantum electrodynamics QED and is called 
quantum chromodynamics or QCD for short. It is a non-Abelian gauge theory. The gauge 
symmetry is an invariance with respect to local transformations of quark colour that build a 
group SU(3), denoted        and called colour group (indicated by the subscript c).  

We have three spin- 

 
 Dirac fields, i.e. the matter field is a 3-component object  = 

[ 


 


 ]  with colour index (r, b, g), and each component is by itself a 4-component Dirac 
spinor. We ignore here the fact that quarks of different flavours are not identical and do not have 
the same mass. Thus we should introduce a flavour index   = (d, u, s, c, b, t), and different 
masses   . We will not do that here to keep the notation simple. 

To make the Lagrangian density of QCD gauge invariant under local        transformations, 
we have to apply the gauge principle. Recall (see Example 7.9) that the algebra su(3) has eight 
generators  

                                                                  = 
 

 
  , A = 1, 2, ..., 8,  

defined by the Gell-Mann matrices   . As in other gauge theories, we have to introduce eight 
‘compensating’ gauge vector fields  

                                                                              
 , A = 1, 2, ..., 8,  

one field for each generator   . The covariant derivative    is then defined as 

                                                        :=    ig    
 
     

  =    ig   , 

where    :=     
  :=    

 
     

 , g  is a ‘strong charge’ coupling strength and   
  (A = 1, 2, . . . , 

8) is an octet of colour fields. Colour charges are sources of these fields that give rise to the 
strong force. The covariant derivative    is now a 3×3 matrix in colour space (337).   

The quanta of the colour fields are called gluons. They are massless spin-1 bosons like 
photon. Also like photon, gluons are electrically neutral, but they are not colour neutral. Each 
gluon carries one colour and an anticolour. Gauge invariance requires a single coupling constant 
g , i.e., all eight gluons couple with the same strength to the quarks. 

There are nine possible combinations of colour and anticolour, but one of them is equivalent 
to white and is excluded, leaving eight distinct gluons. Six of them can convert the colour of a 
quark. These are: rb , rg , bg , br , gb , gr . For example, red-antigreen (rg   turns a red quark into a 
green quark. In addition, there are two different gluons that couple to the colour charge on a 
quark without changing the quark colour:  

                                                rr  gg     and    6 rr  gg    bb   .  

The ninth combination   

                                                                                                                                                                                              

336 R. Feynman on the designation of this property as ‘colour’ [F 0]: „The idiot physicists, unable to come up with any 
wonderful Greek words anymore  call this type of polari ation by the unfortunate name of ‚color’  [sic ] which has 
nothing to do with the color in the normal sense.“ 

337 The   is multiplied implicitly by the identity 33 matrix. 
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                                                                       rr  gg    bb     

is colourless and does not participate in the strong interaction. 

By (7.24) the field strength tensor     is 

                                                     :=         + g      ,   

where    := (  
 ,   

 , ...,   
 ). The Lagrangian density for a quark field  with the colour degree of 

freedom (i.e. the wave function  with three components) is 

(7.41)                                  
  =  (i

 
    )   

 
     

    g    
 . 

The first term looks like the free Dirac Lagrangian density       
    

, the second term is the kinetic 

Lagrangian of the gluon fields    and, finally, the last term is an interaction term. It couples the 

gluon fields   with the quark field . 

Since the group        is non-Abelian, the field strength tensor     contains a nonlinear 

term, which means that gluon self-interactions become possible. A mass term is missing in the 
Lagrangian density     

  because the gauge fields, i.e. the gluons, are massless. This is a bit 

surprising because the strong interaction is extremely short-range. This time the problem 
cannot be solved by spontaneous symmetry breaking, since the gluons have to be massless. 

Notice that quantum electrodynamics and quantum chromodynamics are similar in form: the 
photon and the gluon are identical in their spin and their lack of mass and electric charge.  Yet 
the interactions of quarks are very different from those of electrons. Both electrons and quarks 
form composite objects, namely atoms for electrons and hadrons for quarks. However, in 
contrast with quarks, a small quantity of energy is enough to isolate an electron from an atom.  

An isolated quark has never been detected (338), no matter how much energy is supplied to  
ionize a hadron. When hadrons of the highest energies currently available are smashed into each 
other, what is observed downstream is only lots more hadrons, not fractionally charged quarks 
([H9]). This phenomenon may be compared to the division of a magnetic bar into two smaller 
magnets, as opposed to two monopoles. 

However, probes of the internal structure of hadrons show the quarks moving freely as if 
they were not bound at all. So we are faced with an almost paradoxical situation because we 
know that the forces are indeed so strong that no one has yet succeeded in separating 
completely either a quark or a gluon from a hadron so that they emerge as free particles. If you 
try to separate two quarks, a gluon band forms between them, in which at some point so much 
energy is stored that one new pair of a quark and the corresponding antiquark is created. This is 
due to the fact that the potential energy between two quarks increases with their distance until 
it reaches a certain threshold to produce a new pair of particles. So you cannot isolate a single 
quark.  

Since quarks and gluons carry colour charge, while hadrons do not, this suggests the rule 
that only ‘colourless’ states can exist. This phenomenon is known as colour confinement or 
quark confinement (339). Colour charge generates colour flux lines in a manner analogous to the 
generation of electric flux lines by electric charge. The energy expended per unit length is a 
consequence of this process. An explanation for quark confinement is that a colour charge seeks 

                                                             

338 With the exception of the t quark. Its mass is so large that, although it decays weakly, the energy release is so great 
that its lifetime of 5 ·  0   s is some two orders of magnitude shorter than typical strong interaction timescales; this 
means that it decays before any t-carrying hadrons can be formed. So when a t quark is produced, it decays as a free 
(unbound) particle via the weak interaction. The detection of those decay products allows a direct measurement of 
the top quarks properties, which is a unique behaviour within the Standard Model. 

339 In contrast to asymptotic freedom, confinement has so far not been deduced from the underlying equations of QCD 
based on the Lagrangian (7.41). ([E1]) There are strong indications from numerical simulations that it is so, but we do 
not have a proof. ([J1]) 
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out neutralising partners to form a bound state. The purpose of this process is to contain the flux 
lines within a microscopic volume, thus minimising energy. ([H13]) 

Gluons too have not been seen directly in experiments. But if massless particles that so 
closely resemble the photon existed, they would be easy to detect and they would have been 
known long ago. On the other hand, giving the gluons a mass via the BEH mechanism would 
mean that the mass should be large or the gluons would have been produced by now with high-
energy accelerators. However, if the mass is large, the range of the strong force becomes too 
small ([H9]). 

The resolution of this quandary lies in the fundamental feature of non-Abelian gauge 
theories called asymptotic freedom, whereby the effective coupling strength becomes 
progressively smaller at short distances or high energies (340). Because the gluons carry colour, 
they can interact with themselves, like the   s and   s of the GSW theory. As in that case, these 
gluonic self-interactions cause the QCD interaction strength to decrease at short distances (or 
high energies), ultimately tending to zero. This result was first obtained by Politzer (1973), 
Gross and Wilczek (1973) (341  and ’t Hooft. ’t Hooft’s result  announced at a conference in 
Marseilles in 1972, was not published (342) ([A1], [W11]). 

The result of Politzer and of Gross and Wilczek led rapidly to the general acceptance of QCD 
as the theory of strong interactions, a conclusion reinforced by the demonstration by Coleman 
(343) and Gross (1973) that no theory without Yang-Mills fields possessed the property of 
asymptotic freedom. 

The short range of the strong force is explained by the fact that the potential of the QCD has 
special properties. The range of the strong force is, kind of paradoxically, limited by the fact that 
it becomes stronger with distance. The coupling strength g  increases with distance  at large 
distances ( low energies) g  is large. Consequently, quarks and gluons are confined inside 
hadrons, i.e. there are no free quarks/gluons that would be far apart. 

But why is QCD asymptotically free, in contrast to QED? Unfortunately, a proper 
understanding of how it all works necessitates a considerable detour into the physics of  
 
 

                                                             

340 This is due to the fact that the strong coupling constant g  depends on the energy scale of the interaction and 
decreases with higher energy. More generally, it is a consequence of the renormalisation procedure that the physical 
(i.e. renormalised) coupling constants are not at all constant. Rather, their value depends on the energy scale at which 
they are measured. If the coupling goes to zero in the high-energy limit the theory is called asymptotically free. The 
theory of strong interactions, QCD, turns out to be an asymptotically free theory. That is why quarks are described as 
asymptotically free  particles. ([M1]) 

341 In late 1972 Princeton theorist David Gross had set out to show that asymptotic freedom was simply impossible in 
a quantum field theory. With the help of his student Frank Wilczek he managed instead to prove precisely the 
opposite. Quantum field theories based on local gauge symmetries can accommodate asymptotic freedom. A young 
Harvard graduate student called David Politzer independently made the same discovery. Their papers were published 
in the June 1973 issue of Physical Review Letters. ([B1]) 

David Jonathan Gross (1941 ) is an American theoretical physicist and Professor of  Theoretical Physics at the Kavli 
Institute for Theoretical Physics of the University of California, Santa Barbara (UCSB), 
Hugh David Politzer (1949 ) is an American theoretical physicist and Professor of Theoretical Physics at the 
California Institute of Technology. 
Frank Anthony Wilczek (1951 ) is an American theoretical physicist and Professor of Physics at the Massachusetts 
Institute of Technology (MIT). 
Gross, Politzer and Wilczek shared the Nobel Prize in Physics in 2004. 

342 ’t Hooft had already concluded that Yang–Mills gauge theories could show this counter-intuitive behaviour, but he 
was busy working on renormalization at this time and did not follow it up. ([B1]) 

343 Sidney Richard Coleman (1937 – 2007) was an American theoretical physicist who studied under Murray Gell-
Mann. 
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renormalisation (344), but it would go beyond the scope of this paper. 

As previously mentioned in Section 7.4, quarks acquire mass through interactions with the 
Higgs field. What we observe in the laboratory, however, are not quarks, but hadrons composed 
of quarks. The masses of hadrons have no direct relation to the quark masses, and have little to 
do with the Higgs field. Only roughly 1% of the mass of hadrons comes from interaction with the 
vacuum expectation value of the Higgs field. To illustrate this point, consider the theoretical 
masses of the light quarks u and d, which are respectively 2 and 4.8 MeV. However, the proton, 
composed of uud, has a mass of 938 MeV. This demonstrates that the quark masses are 
negligible in comparison to the proton mass. ([H13]) 

The majority of the proton mass comes from the energy associated with the strong 
interactions between quarks and gluons, rather than from the masses of the quarks themselves. 
The spontaneous breaking of chiral symmetry is a key mechanism in this process, as it leads to 
the generation of the effective quark masses and the binding energy that holds the proton 
together. In the chiral limit, where the masses of the up and down quarks are set to zero, QCD 
exhibits chiral symmetry. This symmetry signifies that the left-chiral and right-chiral 
components of the quark fields are to be regarded as distinct entities  see  5. 8’ . 

In the QCD vacuum, this chiral symmetry is spontaneously broken. This means that the 
ground state of the theory does not respect the symmetry, even though the underlying equations 
do. This breaking of symmetry gives rise to the masses of hadrons (such as protons and 
neutrons) through the interactions of quarks and gluons. The quark condensate interacts with 
the quark fields, leading to the generation of effective masses for the quarks. These effective 
masses are much larger than the masses of the quarks due to their interaction with the Higgs 
field and, as result, contribute significantly to the mass of the proton. ([H13]) 

In summary, QCD is a renormalisable relativistic quantum field theory based on the        
gauge symmetry. The technical problems involving QCD calculations cause that the agreement 
with experiments is much less impressive than is the case for QED, but there are many reasons 
to suppose that QCD is the theory that describes hadronic physics ([W0]). 

We close this section by briefly discussing the requirement of renormalisability for quantum 
field theories. The physical motivation comes from the idea that QFTs involve an implicit 
maximum energy beyond which they cannot be applied. In other words they are valid up to 
energies below a certain scale Λ, which then represents an ultraviolet (UV) cut-off of a field 
theory. In classical physics it is not important to specify such a cut-off carefully. In a quantum 

                                                             

344 The early formulators of quantum field theories were, as a rule, dissatisfied with the renormalisation techniques. It 
seemed illegitimate to do something tantamount to subtracting infinities from infinities to get finite answers. F. Dyson 
argued that these infinities are of a basic nature and cannot be eliminated by any formal mathematical procedures, 
such as the renormalisation method. Dirac (1942) proposed to abandon unitarity, but physical consequences seemed 
hardly acceptable. Wheeler (1937) and Heisenberg (1943) proposed to completely abandon QFT in favour of a theory 
of physical observables (scattering data)  the so-called S-matrix theory, a somewhat desperate idea that nevertheless 
became very popular in the  960’s. ([Z3]) 
Another important critic was Feynman. Despite his crucial role in the development of quantum electrodynamics QED, 
he wrote the following in 1985 ([F10]): 
“The shell game that we play is technically called 'renormali ation'. But no matter how clever the word  it is still what I 
would call a dippy process! Having to resort to such hocus-pocus has prevented us from proving that the theory of 
quantum electrodynamics is mathematically self-consistent. It's surprising that the theory still hasn't been proved 
self-consistent one way or the other by now; I suspect that renormalization is not mathematically legitimate.” 

Beginning in the 1970s, however, inspired by work on the renormalisation group and effective field theory, attitudes 
began to change, especially among younger theorists. Justification for normalisation came decades later from a 
seemingly unrelated branch of physics. Researchers studying magnetisation discovered that renormalisation wasn’t 
about infinities at all. Instead  it spoke to the universe’s separation into domains of independent si es  a perspective 
that guides many corners of physics today. 
“Renormalization helps us simplify the problem ” said Nathan  eiberg  a theoretical physicist at the Institute for 
 dvanced  tudy in Princeton  New Jersey. But “it also hides what happens at short distances. You can’t have it both 
ways.”  [W  ]  [W 6]). 
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theory, however, since all states can contribute to any given process as intermediate (or 
‘virtual’) particles, any quantum calculation will depend explicitly on the cut-off scale Λ. 
For example, the quantum electrodynamics of electrons and photons is only physically correct 
up to an energy of twice the mass of the lightest particle that is heavier than the electron: Λ = 
   , i.e. twice the muon mass. At energies higher than this, muons can no longer be neglected, 

since they can be pair-produced in the quantum process under consideration. The correct theory 
for physics at energies above Λ becomes the quantum electrodynamics of photons, electrons and 
muons (345). This theory is in turn only valid up to the next threshold, and so on ([B11]).  

If detailed knowledge of physics at the Λ scale is necessary in order to calculate probability 
amplitudes for processes at energies lower than Λ, then the theory is called non-renormalisable 
In renormalisable theories, on the other hand, Λ only appears in physical predictions (for large 
Λ) through a small number of parameters, such as the masses and charges, whose values have to 
be determined experimentally. All other processes may then be computed in terms of these 
parameters and definite predictions are possible. For example, in QED there are only two such 
parameters: the mass and charge of electron ([B11]). 

This physical picture implies that renormalisability is the minimal criterion for a theory 
which aims to describe all of the physics appropriate to any given scale. Demanding 
renormalisability for the SM then amounts to the assumption that no unknown particles or 
interactions are required to understand present experiments (see [B11] for more details). 

8. Postlude 

Today, all fundamental interactions are described by gauge theories. As a matter of fact, this is 
the only way that was found to describe the forces in nature in a mathematically consistent way. 
Without gauge theory the Standard Model (SM) of particle physics cannot be formulated and it is 
basically impossible to fully understand the role of the Higgs field without some understanding 
of the role of gauge symmetries. The key feature of gauge theories is the concept of a local 
symmetry. With this we mean that the mathematical transformation that defines the symmetry 
may be applied differently in different points in space. ([B3]) 

The Standard Model of the subatomic particles, developed in the 1960s and 1970s, has stood 
for more than 40 years as ‘the’ theory of particle physics, passing numerous stringent tests. 
While many physicists believe that the SM is not a complete description of particle physics, it is 
expected to be, at worst, incomplete rather than wrong – thus the SM is at worst a subset of the 
true theory of particle physics ([B11]). 

The Standard Model provides a relatively simple picture of quarks and leptons and their 
non-gravitational interactions. The quark colour triplets are the basic source particles of the 
gluon fields in QCD, and they bind together to make hadrons. The weak interactions involve 
quark and lepton doublets. These are sources for the    and    fields. Charged fermions 
(quarks and leptons) are sources for the photon field. All the mediating force quanta have spin 1. 
The weak and strong force fields are generalizations of electromagnetism; all three are examples 
of gauge theories but realized in subtly different ways ([A1]). 

The Standard Model is a gauge theory based on the three-component Lie group 
      ×      ×     . It offers a seemingly correct and complete description of virtually all 
fundamental particle phenomena. Its        component yields the unbroken gauge theory of 
quantum chromodynamics QCD, which ensures quark confinement and underlies nuclear forces. 
The       ×      is spontaneously broken. Its broken symmetries yield the massive bosons to 

                                                             

345 Notice, however, that muons would be stable particles, since QED cannot account for the observed muon decay. 
That decay involves weak interactions about which QED knows nothing. To get the quantum electrodynamics of 
photons, electrons and muons, it is necessary to go beyond QED and use the electroweak theory. ([T5]) 
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weak interactions; its unbroken       subgroup yields quantum electrodynamics QED ([W0]). 
The Lagrangian density of the Standard Model can be written as  

                                                          =    
          

         +         

where  

   
     kinetic part of the gauge fields 

      
    Dirac fermions 

      
    Higgs dynamics and EWSB (Electroweak Symmetry Breaking) 

       
    Yukawa sector (interactions between the Higgs doublet and fermions). 

Using three symmetry groups to describe three different interactions (weak, strong, and 
electromagnetic), the Standard Model is not a unified theory. A more ambitious theory would 
embed it within a larger one-component group, what mathematicians call a simple group. 
Several so-called Grand Unified Theories (GUTs) have been proposed, but none has yet proven 
empirically successful ([W0]). 

The  tandard Model is not yet a ‘theory of everything’. It does not account for the force of 
gravity. In recent years physicists have developed new theories which attempt to unify the 
fundamental forces, including gravity. These are theories such as superstrings and Loop 
Quantum Gravity ([S9a]). Despite the efforts of hundreds of theorists engaged on these projects, 
these new theories remain speculative and have little or no supporting evidence from 
experiment ([B1]).  

For the time being, and despite flaws that have been acknowledged since its inception in the 
late 1970s, the Standard Model is still where most of the real action is ([B1]). 
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